
LIBSVM: a Library for Support Vector Machines

Chih-Chung Chang and Chih-Jen Lin ∗

Initial version: 2001 Last updated: November 16, 2010

Abstract

LIBSVM is a library for support vector machines (SVM). Its goal is to help
users to easily use SVM as a tool. In this document, we present all its imple-
mentation details. For the use of LIBSVM, the README file included in the
package and the LIBSVM FAQ provide the information.

1 Introduction

LIBSVM is a library for support vector machines (SVM). Its goal is to let users can

easily use SVM as a tool. In this document, we present all its implementation details.

For using LIBSVM, the README file included in the package provides the information.

In Section 2, we show formulations used in LIBSVM: C-support vector classifica-

tion (C-SVC), ν-support vector classification (ν-SVC), distribution estimation (one-

class SVM), ε-support vector regression (ε-SVR), and ν-support vector regression

(ν-SVR). We discuss the implementation of solving quadratic problems in Section 3.

Section 4 describes two implementation techniques: shrinking and caching. We also

support different penalty parameters for unbalanced data. Details are in Section 5.

Then Section 6 discusses the implementation of multi-class classification. Parameter

selection is important for obtaining good SVM models. LIBSVM provides simple and

useful tools, which are discussed in Section 7. Section 8 presents the implementation

of probability outputs.

2 Formulations

2.1 C-Support Vector Classification

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such

that yi ∈ {1,−1}, C-SVC (Boser et al., 1992; Cortes and Vapnik, 1995) solves the

∗Department of Computer Science, National Taiwan University, Taipei 106, Taiwan (http://
www.csie.ntu.edu.tw/~cjlin). E-mail: cjlin@csie.ntu.edu.tw

1

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin
http://www.csie.ntu.edu.tw/~cjlin

following primal problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (2.1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

Its dual is

min
α

1

2
αTQα− eTα

subject to yTα = 0, (2.2)

0 ≤ αi ≤ C, i = 1, . . . , l,

where e is the vector of all ones, C > 0 is the upper bound, Q is an l by l positive

semidefinite matrix, Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)
Tφ(xj) is the kernel.

Here training vectors xi are mapped into a higher (maybe infinite) dimensional space

by the function φ.

The decision function is

sgn

(
l∑

i=1

yiαiK(xi,x) + b

)
.

2.2 ν-Support Vector Classification

The ν-support vector classification (Schölkopf et al., 2000) uses a new parameter ν

which controls the number of support vectors and training errors. The parameter

ν ∈ (0, 1] is an upper bound on the fraction of training errors and a lower bound of

the fraction of support vectors.

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl

such that yi ∈ {1,−1}, the primal form considered is:

min
w,b,ξ,ρ

1

2
wTw − νρ+

1

l

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ ρ− ξi,

ξi ≥ 0, i = 1, . . . , l, ρ ≥ 0.

2

The dual is:

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1/l, i = 1, . . . , l, (2.3)

eTα ≥ ν, yTα = 0.

where Qij ≡ yiyjK(xi,xj).

The decision function is:

sgn

(
l∑

i=1

yiαiK(xi,x) + b

)
.

In (Crisp and Burges, 2000; Chang and Lin, 2001), it has been shown that eTα ≥ ν

can be replaced by eTα = ν. With this property, in LIBSVM, we solve a scaled version

of (2.3):

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1, i = 1, . . . , l,

eTα = νl,

yTα = 0.

We output α/ρ so the computed decision function is:

sgn

(
l∑

i=1

yi(αi/ρ)(K(xi,x) + b)

)
and then two margins are

yi(w
Tφ(xi) + b) = ±1

which are the same as those of C-SVC.

2.3 Distribution Estimation (One-class SVM)

One-class SVM was proposed by Schölkopf et al. (2001) for estimating the support of

a high-dimensional distribution. Given training vectors xi ∈ Rn, i = 1, . . . , l without

any class information, the primal form in (Schölkopf et al., 2001) is:

min
w,b,ξ,ρ

1

2
wTw − ρ+

1

νl

l∑
i=1

ξi

subject to wTφ(xi) ≥ ρ− ξi,

ξi ≥ 0, i = 1, . . . , l.

3

http://www.csie.ntu.edu.tw/~cjlin/libsvm

The dual is:

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l, (2.4)

eTα = 1,

where Qij = K(xi,xj) ≡ φ(xi)
Tφ(xj).

In LIBSVM we solve a scaled version of (2.4):

min
1

2
αTQα

subject to 0 ≤ αi ≤ 1, i = 1, . . . , l, (2.5)

eTα = νl.

The decision function is

sgn(
l∑

i=1

αiK(xi,x)− ρ).

2.4 ε-Support Vector Regression (ε-SVR)

Given a set of data points, {(x1, z1), . . . , (xl, zl)}, such that xi ∈ Rn is an input and

zi ∈ R1 is a target output, the standard form of support vector regression (Vapnik,

1998) is:

min
w,b,ξ,ξ∗

1

2
wTw + C

l∑
i=1

ξi + C
l∑

i=1

ξ∗i

subject to wTφ(xi) + b− zi ≤ ε+ ξi,

zi −wTφ(xi)− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

The dual is:

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + ε

l∑
i=1

(αi + α∗i) +
l∑

i=1

zi(αi − α∗i)

subject to
l∑

i=1

(αi − α∗i) = 0, 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (2.6)

4

http://www.csie.ntu.edu.tw/~cjlin/libsvm

where Qij = K(xi,xj) ≡ φ(xi)
Tφ(xj).

The approximate function is:

l∑
i=1

(−αi + α∗i)K(xi,x) + b.

In LIBSVM implementation, we store α and α∗ together in an array. Note that α∗

comes first so the combined array in the code is actually
[
α∗ α

]T
.

2.5 ν-Support Vector Regression (ν-SVR)

Similar to ν-SVC, for regression, Schölkopf et al. (2000) use a parameter ν to control

the number of support vectors. However, unlike ν-SVC, where ν replaces with C,

here ν replaces with the parameter ε of ε-SVR. The primal form is

min
w,b,ξ,ξ∗,ε

1

2
wTw + C(νε+

1

l

l∑
i=1

(ξi + ξ∗i)) (2.7)

subject to (wTφ(xi) + b)− zi ≤ ε+ ξi,

zi − (wTφ(xi) + b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l, ε ≥ 0.

and the dual is

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + zT (α−α∗)

subject to eT (α−α∗) = 0, eT (α + α∗) ≤ Cν,

0 ≤ αi, α
∗
i ≤ C/l, i = 1, . . . , l, (2.8)

Similarly, the inequality eT (α + α∗) ≤ Cν can be replaced by an equality. In

LIBSVM, we consider C ← C/l, so the dual problem solved is:

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + zT (α−α∗)

subject to eT (α−α∗) = 0, eT (α + α∗) = Clν,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l. (2.9)

The decision function is
l∑

i=1

(−αi + α∗i)K(xi,x) + b,

which is the same as that of ε-SVR.

5

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

2.6 Performance Measures

After models are trained by solving the above optimization problems, users can apply

LIBSVM to predict labels (target values) of testing data. Let x1, . . . ,xl̄ be the testing

data and f(x1), . . . , f(xl̄) be LIBSVM’s predicted decision values (target values for

regression). If the true labels (target values) of testing data are known and denoted

as yi, . . . , yl̄, we evaluate the predictions by the following measures:

2.6.1 Classification

Accuracy

=
correctly predicted data

total data
× 100%

=
|{i | yif(xi) > 0}|

l̄
× 100%.

2.6.2 Regression

LIBSVM outputs MSE (mean squared error) and r2 (squared correlation coefficient):

MSE =
1

l̄

l̄∑
i=1

(f(xi)− yi)2 ,

r2 =

(
l̄
∑l̄

i=1 f(xi)yi −
∑l̄

i=1 f(xi)
∑l̄

i=1 yi

)2(
l̄
∑l̄

i=1 f(xi)2 −
(∑l̄

i=1 f(xi)
)2
)(

l̄
∑l̄

i=1 y
2
i −

(∑l̄
i=1 yi

)2
) .

3 Solving the Quadratic Problems

3.1 The Decomposition Method for C-SVC, ε-SVR, and One-
class SVM

We consider the following general form of C-SVC, ε-SVR, and one-class SVM:

min
α

1

2
αTQα + pTα

subject to yTα = ∆, (3.1)

0 ≤ αt ≤ C, t = 1, . . . , l,

where yt = ±1, t = 1, . . . , l. It can be clearly seen that C-SVC and one-class SVM

are already in the form of (3.1). For ε-SVR, we consider the following reformulation

6

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

of (2.6):

min
α,α∗

1

2

[
αT , (α∗)T

] [Q −Q
−Q Q

] [
α
α∗

]
+
[
εeT + zT , εeT − zT

] [α
α∗

]
subject to yT

[
α
α∗

]
= 0, 0 ≤ αt, α

∗
t ≤ C, t = 1, . . . , l, (3.2)

where y is a 2l by 1 vector with yt = 1, t = 1, . . . , l and yt = −1, t = l + 1, . . . , 2l.

The difficulty of solving (3.1) is the density of Q because Qij is in general not zero.

In LIBSVM, we consider the decomposition method to conquer this difficulty. Some

work on this method are, for example, (Osuna et al., 1997a; Joachims, 1998; Platt,

1998). This method modifies only a subset of α per iteration. This subset, denoted

as the working set B, leads to a small sub-problem to be minimized in each iteration.

An extreme case is the Sequential Minimal Optimization (SMO) (Platt, 1998), which

restricts B to have only two elements. Then in each iteration one solves a simple

two-variable problem without needing optimization software. Here we consider an

SMO-type decomposition method proposed in Fan et al. (2005).

Algorithm 1 (An SMO-type Decomposition method in Fan et al. (2005))

1. Find α1 as the initial feasible solution. Set k = 1.

2. If αk is a stationary point of (2.2), stop. Otherwise, find a two-element working

set B = {i, j} by WSS 1 (described in Section 3.2). Define N ≡ {1, . . . , l}\B
and αk

B and αk
N to be sub-vectors of αk corresponding to B and N , respectively.

3. If aij ≡ Kii +Kjj − 2Kij > 0

Solve the following sub-problem with the variable αB:

min
αi,αj

1

2

[
αi αj

] [Qii Qij

Qij Qjj

] [
αi
αj

]
+ (pB +QBNα

k
N)T

[
αi
αj

]
subject to 0 ≤ αi, αj ≤ C, (3.3)

yiαi + yjαj = ∆− yTNα
k
N ,

else

7

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Solve

min
αi,αj

1

2

[
αi αj

] [Qii Qij

Qij Qjj

] [
αi
αj

]
+ (pB +QBNα

k
N)T

[
αi
αj

]
+
τ − aij

4
((αi − αki)2 + (αj − αkj)2) (3.4)

subject to constraints of (3.3).

4. Set αk+1
B to be the optimal solution of (3.3) and αk+1

N ≡ αk
N . Set k ← k + 1

and goto Step 2.

Note that B is updated at each iteration. To simplify the notation, we simply

use B instead of Bk. If aij ≤ 0, (3.3) is a concave problem. Hence we use a convex

modification in (3.4).

3.2 Stopping Criteria and Working Set Selection for C-SVC,
ε-SVR, and One-class SVM

The Karush-Kuhn-Tucker (KKT) optimality condition of (3.1) shows that a vector α

is a stationary point of (3.1) if and only if there is a number b† and two nonnegative

vectors λ and µ such that

∇f(α) + by = λ− µ,

λiαi = 0, µi(C − αi) = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇f(α) ≡ Qα + p is the gradient of f(α). This condition can be rewritten as

∇f(α)i + byi ≥ 0 if αi < C, (3.5)

∇f(α)i + byi ≤ 0 if αi > 0. (3.6)

Since yi = ±1, by defining

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1},
(3.7)

a feasible α is a stationary point of (3.1) if and only if

m(α) ≤M(α), (3.8)

†From the primal-dual relationship, this b is the same as the one in the primal problem.

8

where

m(α) ≡ max
i∈Iup(α)

−yi∇f(α)i, and M(α) ≡ min
i∈Ilow(α)

−yi∇f(α)i.

From this we have the following stopping condition:

m(αk)−M(αk) ≤ ε. (3.9)

About the selection of the working set set B, we consider the following procedure:

WSS 1

1. For all t, s, define

ats ≡ Ktt +Kss − 2Kts, bts ≡ −yt∇f(αk)t + ys∇f(αk)s > 0 (3.10)

and

āts ≡
{
ats if ats > 0,
τ otherwise.

(3.11)

Select

i ∈ arg max
t
{−yt∇f(αk)t | t ∈ Iup(αk)},

j ∈ arg min
t

{
− b

2
it

āit
| t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i

}
. (3.12)

2. Return B = {i, j}.

Details of how we choose this working set is in (Fan et al., 2005, Section II).

3.3 Convergence of the Decomposition Method

See (Fan et al., 2005, Section III) or (Chen et al., 2006) for a detailed discussion of

the convergence of Algorithm 1.

3.4 The Decomposition Method for ν-SVC and ν-SVR

Both ν-SVC and ν-SVR can be considered as the following general form:

min
α

1

2
αTQα + pTα

subject to yTα = ∆1, (3.13)

eTα = ∆2,

0 ≤ αt ≤ C, t = 1, . . . , l.

9

The KKT condition of (3.13) shows

∇f(α)i − ρ+ byi = 0 if 0 < αi < C,

≥ 0 if αi = 0,

≤ 0 if αi = C.

Define

r1 ≡ ρ− b, r2 ≡ ρ+ b.

If yi = 1 the KKT condition becomes

∇f(α)i − r1 ≥ 0 if αi < C, (3.14)

≤ 0 if αi > 0.

On the other hand, if yi = −1, it is

∇f(α)i − r2 ≥ 0 if αi < C, (3.15)

≤ 0 if αi > 0.

Hence given a tolerance ε > 0, the stopping condition is:

max (mp(α)−Mp(α),mn(α)−Mn(α)) < ε, (3.16)

where

mp(α) ≡ max
i∈Iup(α),yi=1

−yi∇f(α)i, Mp(α) ≡ min
i∈Ilow(α),yi=1

−yi∇f(α)i, and

mn(α) ≡ max
i∈Iup(α),yi=−1

−yi∇f(α)i, Mn(α) ≡ min
i∈Ilow(α),yi=−1

−yi∇f(α)i.

The working set selection is by extending WSS 1 to the following

WSS 2 (Extending WSS 1 to ν-SVM)

1. Find

ip ∈ argmp(α
k),

jp ∈ arg min
t

{
−
b2
ipt

āipt
| yt = 1,αt ∈ Ilow(αk),−yt∇f(αk)t < −yip∇f(αk)ip

}
.

2. Find

in ∈ argmn(αk),

jn ∈ arg min
t

{
−
b2
int

āint
| yt = −1,αt ∈ Ilow(αk),−yt∇f(αk)t < −yin∇f(αk)in

}
.

3. Return {ip, jp}) or {in, jn} depending on which one gives smaller −b2
ij/āij.

10

3.5 Analytical Solutions

Details are described in Section 5 in which we discuss the solution of a more general

sub-problem.

3.6 The Calculation of b or ρ

After the solution α of the dual optimization problem is obtained, the variables b or

ρ must be calculated as they are used in the decision function.

We first describe the case of C-SVC, ε-SVR, and one-class SVM. For this case, b

has the same role as −ρ in one-class SVM, so we define rho = −b and discuss how to

find it. If there are αi which satisfy 0 < αi < C, then from the KKT condition (3.8),

ρ = yi∇f(α)i. Practically to avoid numerical errors, we average them:

ρ =

∑
0<αi<C

yi∇f(α)i∑
0<αi<C

1
.

On the other hand, if there is no such αi, the KKT condition becomes

−M(α) = max{yi∇f(α)i | αi = 0, yi = −1 or αi = C, yi = 1}

≤ ρ

≤ −m(α) = min{yi∇f(α)i | αi = 0, yi = 1 or αi = C, yi = −1}.

We take ρ the midpoint of the range.

For the case of ν-SVC and ν-SVR, b and ρ both appear. The KKT condition

of (3.13) has been shown in (3.14) and (3.15). Now we consider the case of yi = 1.

If there are αi which satisfy 0 < αi < C, then r1 = ∇f(α)i. Practically to avoid

numerical errors, we average them:

r1 =

∑
0<αi<C,yi=1∇f(α)i∑

0<αi<C,yi=1 1
.

On the other hand, if there is no such αi, as r1 must satisfy

max
αi=C,yi=1

∇f(α)i ≤ r1 ≤ min
αi=0,yi=1

∇f(α)i,

we take r1 the midpoint of the range.

For yi = −1, we can calculate r2 in a similar way.

After r1 and r2 are obtained,

ρ =
r1 + r2

2
and − b =

r1 − r2

2
.

11

3.7 Initial Values

In the beginning of Algorithm 1, we must give a feasible α. For C-SVC and ε-SVR,

the initial α is simply zero. For ν-SVC, after scaling we have from (2.5) that

αi ≤ 1 and
∑
i:yi=1

αi =
νl

2
.

We therefore let the first νl
2

elements of αi with yi = 1 to have the value one. The

situation for yi = −1 is similar.

We use the same setting for one-class SVM and ν-SVR.

4 Shrinking and Caching

4.1 Shrinking

Since for many problems the number of free support vectors (i.e. 0 < αi < C) is small,

the shrinking technique reduces the size of the working problem without considering

some bounded variables (Joachims, 1998). Near the end of the iterative process, the

decomposition method identifies a possible set A where all final free αi may reside in.

Indeed we can have the following theorem which shows that at the final iterations of

the decomposition methods proposed in Section 3.2, only variables corresponding to

a small set are still allowed to move:

Theorem 4.1 (Theorem IV in (Fan et al., 2005)) Assume Q is positive semi-

definite.

1. The following set is independent of any optimal solution ᾱ:

I ≡ {i | −yi∇f(ᾱ)i > M(ᾱ) or − yi∇f(ᾱ)i < m(ᾱ)}. (4.1)

Problem (2.2) has unique and bounded optimal solutions at αi, i ∈ I.

2. Assume Algorithm 1 generates an infinite sequence {αk}. There is k̄ such that

after k ≥ k̄, every αki , i ∈ I has reached the unique and bounded optimal solution.

It remains the same in all subsequent iterations and ∀k ≥ k̄:

i 6∈ {t |M(αk) ≤ −yt∇f(αk)t ≤ m(αk)}. (4.2)

12

Hence instead of solving the whole problem (2.2), the decomposition method works

on a smaller problem:

min
αA

1

2
αT
AQAAαA − (pA −QANα

k
N)TαA

subject to 0 ≤ (αA)t ≤ C, t = 1, . . . , q, (4.3)

yTAαA = ∆− yTNα
k
N ,

where N = {1, . . . , l}\A is the set of shrunk variables.

Of course this heuristic may fail if some elements are wrongly shrunk. When that

happens, the whole problem (2.2) is reoptimized from a starting point α where αA

optimal for (4.3) and αN corresponds to shrunk bounded variables. Note that while

solving the shrunk problem (4.3), we only know the gradient QAAαA +QANαN + pA

of (4.3). Hence when problem (2.2) is reoptimized we must reconstruct the whole

gradient ∇f(α), which is discussed in Section 4.3.

Several SVM implementations begin the shrinking procedure near the end of the

iterative process, but in LIBSVM, we start from the beginning. The procedure is as

follows:

1. After every min(l, 1000) iterations, we try to shrink some variables. Note that

during the iterative process

m(αk) > M(αk) (4.4)

as (3.9) is not satisfied yet. Following Theorem 4.1, we conjecture that variables

in the following set can be shrunk:

{t | −yt∇f(αk)t > m(αk), t ∈ Ilow(αk), αkt is bounded}∪

{t | −yt∇f(αk)t < M(αk), t ∈ Iup(αk), αkt is bounded}

={t | −yt∇f(αk)t > m(αk), αkt = C, yt = 1 or αkt = 0, yt = −1}∪

{t | −yt∇f(αk)t < M(αk), αkt = 0, yt = 1 or αkt = C, yt = −1}.

(4.5)

Thus the setA of activated variables is dynamically reduced in every min(l, 1000)

iterations. The problem (4.3) is thus constantly changed. Note that the above

m(αk) and M(αk) are calculated using (4.3).

13

http://www.csie.ntu.edu.tw/~cjlin/libsvm

2. Of course the above shrinking strategy may be too aggressive. Since the de-

composition method has slow convergence and a large portion of iterations are

spent for achieving the final digit of the required accuracy, we would not like

those iterations are wasted because of a wrongly shrunk problem (4.3). Hence

when the decomposition method first achieves the condition

m(αk) ≤M(αk) + 10ε, (4.6)

where ε is the specified stopping tolerance, we reconstruct the whole gradient.

Details are in Section 4.3.

For ν-SVC and ν-SVR, as the stopping condition (3.16) is different from (3.9),

the set (4.5) must be modified. For yt = 1, we shrink elements in the following set

{t | −yt∇f(αk)t > mp(α
k), αt = C, yt = 1}∪

{t | −yt∇f(αk)t < Mp(α
k), αt = 0, yt = 1}.

For yt = −1, we consider the following set:

{t | −yt∇f(αk)t > mn(αk), αt = 0, yt = −1}∪

{t | −yt∇f(αk)t < Mn(αk), αt = C, yt = −1}.

4.2 Caching

An effective technique for reducing the computational time is caching. Since Q is fully

dense and may not be stored in the computer memory, elements Qij are calculated

as needed. One can use a special storage called cache to store recently used Qij

(Joachims, 1998). Then some kernel elements do not need to be recalculated.

Theorem 4.1 also supports the use of caching as in final iterations only some

columns of the matrix Q are still needed. If the cache can contain these columns, we

can avoid most kernel evaluations in final iterations.

In LIBSVM, we consider a simple least-recent-use strategy for the cache. We use a

circular list of structures. Each structure corresponds to a kernel column and caches

several elements of that column. As (4.3) is dynamically reduced, if a column i is

needed but not in the cache, we calculate and store only Q1,i, . . . , Q|A|,i. Therefore,

columns cached in the computer memory may be in different length.

14

http://www.csie.ntu.edu.tw/~cjlin/libsvm

4.3 Reconstructing the Gradient

To decrease the cost of reconstructing the gradient ∇f(α), during the iterations we

maintain

Ḡi = C
∑

j:αj=C

Qij, i = 1, . . . , l.

Then for ∇f(α)i, i /∈ A, we have

∇f(α)i =
l∑

j=1

Qijαj + pi = Ḡi + pi +
∑
j:j∈A

0<αj<C

Qijαj. (4.7)

We use the fact that if j /∈ A, then αj = 0 or C.

To calculate (4.7), we need a two-level loop over i and j. Using i or j first may

result in a very different number of Qij evaluations. We discuss their differences

below. Note that in our implementation, we always swap elements of α to maintain

that A = {1, . . . , |A|}.

1. For |A| + 1 ≤ i ≤ l, calculate Qi,1:|A|. Though in (4.7), only {Qij | 0 < αj <

C, j ∈ A} are needed, due to our cache implementation, we must obtain all

elements of Qi,1:|A| (i.e., {Qij | j ∈ A}). This method needs at most

(l − |A|) · |A| (4.8)

kernel evaluations.

2. Let F = {j | 1 ≤ j ≤ |A| and 0 < αj < C}. For each j ∈ F , we obtain Q1:l,j.

Though only Q|A|+1:l,j is needed in calculating ∇f(α)i, i = |A|+ 1, . . . , l, due to

our cache implementation, we must get the whole column. This method needs

at most

l · |F | (4.9)

kernel evaluations.

We may choose a method by comparing (4.8) and (4.9). However, the decision de-

pends on whether Q’s elements have been cached. If the cache is large enough, then

elements of Q’s first |A| columns tend to be in the cache as they have been recently

15

used. Therefore, while method 1 may still require (l − |A|) · |A| kernel valuations,

method 2 may need fewer evaluations than l · |F |.
Therefore, as method 2 takes an advantage of the cache implementation, we con-

sider the following rule:

If l · |F | > 2 · (l − |A|) · |A|
use method 1

Else
use method 2

This rule may not give the optimal choice as we do not take the cache contents into

account. However, in the worst scenario, the selected method by the above rule is

only slightly slower than the other method. Before giving some detailed explanations

below, we make several assumptions:

• A LIBSVM training procedure involves two gradient reconstructions: The first

is performed when the 10ε tolerance is achieved; see Eq. (4.6). The second is

in the end of the training procedure.

• Our rule assigns the same method to perform the two gradient reconstructions.

Moreover, these two reconstructions cost a similar amount of time.

We refer to “total training time of method 1” as the whole LIBSVM training time

(where method 1 is used for reconstructing gradients), and “reconstruction time of

method 1” as the time of one single gradient reconstruction via method 1. We then

consider two situations:

1. Method 1 is chosen but method 2 is better.

We have

Total time of method 1

≤ (Total time of method 2) + 2× (Reconstruction time of method 1)

≤ 2× (Total time of method 2). (4.10)

We explain the second inequality in detail. If method 2 is used for reconstructing

gradients, during the training procedure, Q:,j, j ∈ F must have been calculated

16

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

(either in regular iterations or reconstructing gradients). Since l · |F | > 2 · (l −
|A|) · |A|,

(Reconstruction time of method 1) ≤ 1

2
· (Total time of method 2).

Hence (4.10) follows.

2. Method 2 is chosen but method 1 is better.

We consider the worst situation where elements of Q’s first |A| columns are not

in the cache. As |A| + 1, . . . , l are indices of shrunk variables, most likely the

remaining l − |A| columns of Q are not in the cache either. Since l · |F | ≤
2 · (l − |A|) · |A|,

(Reconstruction time of method 2) ≤ 2 · (Reconstruction time of method 1).

Therefore,

Total time of method 2

≤ (Total time of method 1) + 2× (Reconstruction time of method 1).

Table 4.1 compares the number of kernel evaluations in reconstructing the gra-

dient. We consider problems a7a and ijcnn1‡. Clearly, the proposed rule selects the

better method for both problems. We implement this technique after version 2.88 of

LIBSVM.

4.4 Is Shrinking Always Better?

We found that if the number of iterations is large, then shrinking can shorten the

training time. However, if we stop the training procedure early (i.e., using a large

ε as the stopping tolerance), the implementation without shrinking may be much

faster. In this situation, the number of iterations is often small. The time spent on

all iterations can be even smaller than one single gradient reconstruction.

In Table 4.1, we show the total training time without using shrinking. For a7a,

we use the default ε = 0.001. Under the parameters C = 1 and γ = 4, the number of

‡Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

17

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Cache = 1000 MB Cache = 10 MB
Method 1 Method 2 Method 1 Method 2 |F | |A| l

0 21,470,526 45,213,024 170,574,272 10,597 12,476 16,100
0 0 45,213,024 171,118,048 10,630 12,476 16,100

102s 108s 341s 422s
No shrinking: 111s No shrinking: 381s

(a) a7a: C = 1, γ = 4, ε = 0.001.

Cache = 1000 MB Cache = 10 MB
Method 1 Method 2 Method 1 Method 2 |F | |A| l

274,297,840 5,403,072 275,695,536 88,332,330 1,767 43,678 49,990
263,843,538 28,274,195 264,813,241 115,346,805 2,308 6,023 49,990

189s 46s 203s 116s
No shrinking: 42s No shrinking: 87s

(b) ijcnn1: C = 16, γ = 4, ε = 0.5.

Table 4.1: The decomposition method reconstructs the gradient twice. We show in
each row the number of kernel evaluations of a reconstruction. We check two cache
sizes to reflect the situations with/without enough cache. The last row gives the
total training time in seconds (where gradient constructions are only part of it). We
consider the RBF kernel K(xi,xj) = exp(−γ‖xi − xj‖2).

iterations is more than 30,000. Then shrinking is useful. However, for ijcnn1, we use

a loose tolerance ε = 0.5, so the number of iterations is only around 4,000. Since our

shrinking strategy is quite aggressive, before the first gradient reconstruction, only

QF,F are in the cache, Then we need to obtain Q:,F in order to calculate the gradient.

If there are enough iterations, most elements in A should be free. In contrast,

if the number of iterations is small (e.g., ijcnn1 in Table 4.1), we have |F | � |A|.
Therefore, we can check the relation between |F | and |A| to conjecture if shrinking

if useful. In LIBSVM, if shrinking is enabled and 2 · |F | < |A| in reconstructing the

gradient, we issue a warning message to indicate that the code may be faster without

shrinking.

4.5 Computational Complexity

The discussion in Section 3.3 is about the asymptotic convergence of the decomposi-

tion method. Here, we discuss the computational complexity.

The main operations are on finding QBNα
k
N + pB of (3.3) and the update of

18

http://www.csie.ntu.edu.tw/~cjlin/libsvm

∇f(αk) to ∇f(αk+1). Note that ∇f(α) is used in the working set selection as well

as the stopping condition. They can be considered together as

QBNα
k
N + pB = ∇f(αk)−QBBα

k
B, (4.11)

and

∇f(αk+1) = ∇f(αk) +Q:,B(αk+1
B −αk

B), (4.12)

where Q:,B is the sub-matrix of Q with column in B. That is, at the kth iteration,

as we already have ∇f(αk), the right-hand-side of (4.11) is used to construct the

sub-problem. After the sub-problem is solved, (4.12) is employed to have the next

∇f(αk+1). As B has only two elements and solving the sub-problem is easy, the main

cost is Q:,B(αk+1
B −αk

B) of (4.12). The operation itself takes O(2l) but if Q:,B is not

available in the cache and each kernel evaluation costs O(n), one column indexes of

Q:,B already needs O(ln). Therefore, the complexity is:

1. #Iterations×O(l) if most columns of Q are cached during iterations.

2. #Iterations×O(nl) if most columns of Q are cached during iterations and each

kernel evaluation is O(n).

Note that if shrinking is incorporated, l will gradually decrease during iterations.

5 Unbalanced Data

For some classification problems, numbers of data in different classes are unbalanced.

Hence some researchers (e.g. (Osuna et al., 1997b)) have proposed to use different

penalty parameters in the SVM formulation: For example, C-SVM becomes

min
w,b,ξ

1

2
wTw + C+

∑
yi=1

ξi + C−
∑
yi=−1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

19

Its dual is

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C+, if yi = 1, (5.1)

0 ≤ αi ≤ C−, if yi = −1, (5.2)

yTα = 0.

Note that by replacing C with different Ci, i = 1, . . . , l, most of the analysis earlier

are still correct. Now using C+ and C− is just a special case of it. Therefore, the

implementation is almost the same. A main difference is on the solution of the sub-

problem (3.3). Now it becomes:

min
αi,αj

1

2

[
αi αj

] [Qii Qij

Qji Qjj

] [
αi
αj

]
+ (Qi,NαN − 1)αi + (Qj,NαN − 1)αj

subject to yiαi + yjαj = ∆− yTNα
k
N , (5.3)

0 ≤ αi ≤ Ci, 0 ≤ αj ≤ Cj,

where Ci and Cj can be C+ or C− depending on yi and yj.

Let αi = αki + di, αj = αkj + dj and d̂i ≡ yidi, d̂j ≡ yjdj. Then (5.3) can be written

as

min
di,dj

1

2

[
di dj

] [Qii Qij

Qij Qjj

] [
di
dj

]
+
[
∇f(αk)i ∇f(αk)j

] [di
dj

]
subject to yidi + yjdj = 0, (5.4)

−αki ≤ di ≤ C − αki ,−αkj ≤ dj ≤ C − αkj .

Define aij and bij as in (3.10). Note that if aij ≤ 0, then a modification similar to

(3.4). Using d̂i = −d̂j, the objective function can be written as

1

2
āij d̂

2
j + bij d̂j.

Thus,

αnew
i = αki + yibij/āij,

αnew
j = αki − yjbij/āij. (5.5)

20

To modify them back to the feasible region, we first consider the case yi 6= yj and

write (5.5) as

αnew
i = αki + (−∇f(αk)i −∇f(αk)j)/āij,

αnew
j = αki + (−∇f(αk)i −∇f(αk)j)/āij.

If αnew is not feasible, (αnew
i , αnew

j) is in one of the following four regions:

-

6

αi

αj

I

II

III

IV

If it is in region I, αk+1
i is set to be Ci first and then

αk+1
j = Ci − (αki − αkj).

Of course we must check if it is in region I first. If so, we have

αki − αkj > Ci − Cj and αnew
i ≥ Ci.

Other cases are similar. Therefore, we have the following procedure to identify

(αnew
i , αnew

j) in different regions and change it back to the feasible set.

if(y[i]!=y[j])

{

double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j];

if (quad_coef <= 0)

quad_coef = TAU;

double delta = (-G[i]-G[j])/quad_coef;

double diff = alpha[i] - alpha[j];

alpha[i] += delta;

alpha[j] += delta;

if(diff > 0)

{

if(alpha[j] < 0) // in region III

{

alpha[j] = 0;

21

alpha[i] = diff;

}

}

else

{

if(alpha[i] < 0) // in region IV

{

alpha[i] = 0;

alpha[j] = -diff;

}

}

if(diff > C_i - C_j)

{

if(alpha[i] > C_i) // in region I

{

alpha[i] = C_i;

alpha[j] = C_i - diff;

}

}

else

{

if(alpha[j] > C_j) // in region II

{

alpha[j] = C_j;

alpha[i] = C_j + diff;

}

}

}

6 Multi-class classification

We use the “one-against-one” approach (Knerr et al., 1990) in which k(k − 1)/2

classifiers are constructed and each one trains data from two different classes. The

first use of this strategy on SVM was in (Friedman, 1996; Kreßel, 1999). For training

data from the ith and the jth classes, we solve the following two-class classification

22

problem:

min
wij ,bij ,ξij

1

2
(wij)Twij + C(

∑
t

(ξij)t)

subject to (wij)Tφ(xt) + bij ≥ 1− ξijt , if xt in the ith class,

(wij)Tφ(xt) + bij ≤ −1 + ξijt , if xt in the jth class,

ξijt ≥ 0.

In classification we use a voting strategy: each binary classification is considered to be

a voting where votes can be cast for all data points x - in the end point is designated

to be in a class with maximum number of votes.

In case that two classes have identical votes, though it may not be a good strategy,

now we simply select the one with the smallest index.

There are other methods for multi-class classification. Some reasons why we choose

this “1-against-1” approach and detailed comparisons are in Hsu and Lin (2002).

7 Parameter Selection

LIBSVM provides a parameter selection tool using the RBF kernel: cross validation

via parallel grid search. While cross validation is available for both SVC and SVR,

for the grid search, currently we support only C-SVC with two parameters C and γ.

They can be easily modified for other kernels such as linear and polynomial, or for

SVR.

For median-sized problems, cross validation might be the most reliable way for

parameter selection. First, the training data is separated to several folds. Sequentially

a fold is considered as the validation set and the rest are for training. The average of

accuracy on predicting the validation sets is the cross validation accuracy.

Our implementation is as follows. Users provide a possible interval of C (or γ)

with the grid space. Then, all grid points of (C, γ) are tried to see which one gives

the highest cross validation accuracy. Users then use the best parameter to train the

whole training set and generate the final model.

For easy implementation, we consider each SVM with parameters (C, γ) as an

independent problem. As they are different jobs, we can easily solve them in parallel.

23

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Figure 1: Contour plot of heart scale included in the LIBSVM package

Currently, LIBSVM provides a very simple tool so that jobs are dispatched to a cluster

of computers which share the same file system.

Note that now under the same (C, γ), the one-against-one method is used for

training multi-class data. Hence, in the final model, all k(k− 1)/2 decision functions

share the same (C, γ).

LIBSVM also outputs the contour plot of cross validation accuracy. An example

is in Figure 1.

8 Probability Estimates

Support vector classification (regression) predicts only class label (approximate target

value) but not probability information. In the following we briefly describe how we

extend SVM for probability estimates. More details are in Wu et al. (2004) for

classification and in Lin and Weng (2004) for regression.

24

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Given k classes of data, for any x, the goal is to estimate

pi = p(y = i | x), i = 1, . . . , k.

Following the setting of the one-against-one (i.e., pairwise) approach for multi-class

classification, we first estimated pairwise class probabilities

rij ≈ p(y = i | y = i or j,x)

using an improved implementation (Lin et al., 2003) of (Platt, 2000):

rij ≈
1

1 + eAf̂+B
, (8.1)

where A and B are estimated by minimizing the negative log-likelihood function

using known training data and their decision values f̂ . Labels and decision values

are required to be independent so here we conduct five-fold cross-validation to obtain

decision values.

Then the second approach in Wu et al. (2004) is used to obtain pi from all these

rij’s. It solves the following optimization problem:

min
p

1

2

k∑
i=1

∑
j:j 6=i

(rjipi − rijpj)2 subject to
k∑
i=1

pi = 1, pi ≥ 0,∀i. (8.2)

The objective function comes from the equality

p(y = j | y = i or j,x) · p(y = i | x) = p(y = i | y = i or j,x) · p(y = j | x)

and can be reformulated as

min
p

1

2
pTQp, (8.3)

where

Qij =

{∑
s:s 6=i r

2
si if i = j,

−rjirij if i 6= j.
(8.4)

This problem is convex, so the optimality conditions that there is a scalar b such that

[
Q e
eT 0

] [
p
b

]
=

[
0
1

]
. (8.5)

Here e is the k × 1 vector of all ones, 0 is the k × 1 vector of all zeros, and b is

the Lagrangian multiplier of the equality constraint
∑k

i=1 pi = 1. Instead of directly

solving the linear system (8.5), we derive a simple iterative method in the following.

25

As

−pTQp = −pTQ(−bQ−1e) = bpTe = b,

the solution p satisfies

Qttpt +
∑
j:j 6=t

Qtjpj − pTQp = 0, for any t. (8.6)

Using (8.6), we consider the following algorithm:

Algorithm 2

1. Start with some initial pi ≥ 0,∀i and
∑k

i=1 pi = 1.

2. Repeat (t = 1, . . . , k, 1, . . .)

pt ←
1

Qtt

[−
∑
j:j 6=t

Qtjpj + pTQp] (8.7)

normalize p (8.8)

until (8.5) is satisfied.

This procedure guarantees to find a global optimum of (8.2). Using some tricks, we

do not need to recalculate pTQp in each iteration. Detailed implementation notes

are in Appendix C of Wu et al. (2004). We consider a relative stopping condition for

Algorithm 2:

‖Qp− pTQpe‖1 = max
t
|(Qp)t − pTQp| < 0.005/k.

When k is large, p will be closer to zero, so we decrease the tolerance by a factor of

k.

Next, we discuss SVR probability inference. For a given set of training data

D = {(xi, yi) | xi ∈ Rn, yi ∈ R, i = 1, . . . , l}, we suppose that the data are collected

from the model:

yi = f(xi) + δi, (8.9)

where f(x) is the underlying function and δi are independent and identically dis-

tributed random noises. Given a test data x, the distribution of y given x and D,

P (y | x,D), allows one to draw probabilistic inferences about y; for example, one

can construct a predictive interval I = I(x) such that y ∈ I with a pre-specified

26

probability. Denoting f̂ as the estimated function based on D using SVR, then

ζ = ζ(x) ≡ y − f̂(x) is the out-of-sample residual (or prediction error), and y ∈ I is

equivalent to ζ ∈ I − f̂(x). We propose to model the distribution of ζ based on a

set of out-of-sample residuals {ζi}li=1 using training data D. The ζi’s are generated

by first conducting a k-fold cross validation to get f̂j, j = 1, . . . , k, and then setting

ζi ≡ yi− f̂j(xi) for (xi, yi) in the jth fold. It is conceptually clear that the distribution

of ζi’s may resemble that of the prediction error ζ.

Figure 2 illustrates ζi’s from a real data. Basically, a discretized distribution like

histogram can be used to model the data; however, it is complex because all ζi’s must

be retained. On the contrary, distributions like Gaussian and Laplace, commonly

used as noise models, require only location and scale parameters. In Figure 2 we plot

the fitted curves using these two families and the histogram of ζi’s. The figure shows

that the distribution of ζi’s seems symmetric about zero and that both Gaussian and

Laplace reasonably capture the shape of ζi’s. Thus, we propose to model ζi by zero-

mean Gaussian and Laplace, or equivalently, model the conditional distribution of y

given f̂(x) by Gaussian and Laplace with mean f̂(x).

(Lin and Weng, 2004) discussed a method to judge whether a Laplace and Gaus-

sian distribution should be used. Moreover, they experimentally show that in all cases

they have tried, Laplace is better. Thus, here we consider the zero-mean Laplace with

a density function:

p(z) =
1

2σ
e−
|z|
σ . (8.10)

Assuming that ζi are independent, we can estimate the scale parameter by maximizing

the likelihood. For Laplace, the maximum likelihood estimate is

σ =

∑l
i=1 |ζi|
l

. (8.11)

(Lin and Weng, 2004) pointed out that some “very extreme” ζi may cause inaccurate

estimation of σ. Thus, they propose to estimate the scale parameter by discarding ζi’s

which exceed ±5× (standard deviation of ζi). Thus, for any new data x, we consider

that

y = f̂(x) + z,

where z is a random variable following the Laplace distribution with parameter σ.

27

In theory, the distribution of ζ may depend on the input x, but here we assume

that it is free of x. This is similar to the model (8.1) for classification. Such an

assumption works well in practice and leads to a simple model.

Figure 2: Histogram of ζi’s from a data set and the modeling via Laplace and Gaussian
distributions. The x-axis is ζi using five-fold CV and the y-axis is the normalized
number of data in each bin of width 1.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via

the grants NSC 89-2213-E-002-013 and NSC 89-2213-E-002-106. The authors thank

Chih-Wei Hsu and Jen-Hao Lee for many helpful discussions and comments. We also

thank Ryszard Czerminski and Lily Tian for some useful comments.

References

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, pages 144–152. ACM Press, 1992.

C.-C. Chang and C.-J. Lin. Training ν-support vector classifiers: Theory and algo-

rithms. Neural Computation, 13(9):2119–2147, 2001.

28

P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposition methods

for support vector machines. IEEE Transactions on Neural Networks, 17:893–908,

July 2006. URL http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.

pdf.

C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297,

1995.

D. J. Crisp and C. J. C. Burges. A geometric interpretation of ν-SVM classifiers.

In S. Solla, T. Leen, and K.-R. Müller, editors, Advances in Neural Information

Processing Systems, volume 12, Cambridge, MA, 2000. MIT Press.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order

information for training SVM. Journal of Machine Learning Research, 6:1889–1918,

2005. URL http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf.

J. Friedman. Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford University, 1996. Available at

http://www-stat.stanford.edu/reports/friedman/poly.ps.Z.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector

machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C.

Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector

Learning, Cambridge, MA, 1998. MIT Press.

S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise

procedure for building and training a neural network. In J. Fogelman, editor, Neu-

rocomputing: Algorithms, Architectures and Applications. Springer-Verlag, 1990.

U. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf,

C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support

Vector Learning, pages 255–268, Cambridge, MA, 1999. MIT Press.

29

http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf

C.-J. Lin and R. C. Weng. Simple probabilistic predictions for support vector regres-

sion. Technical report, Department of Computer Science, National Taiwan Univer-

sity, 2004. URL http://www.csie.ntu.edu.tw/~cjlin/papers/svrprob.pdf.

H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt’s probabilistic outputs for sup-

port vector machines. Technical report, Department of Computer Science, National

Taiwan University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/

plattprob.ps.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application

to face detection. In Proceedings of CVPR’97, pages 130–136, New York, NY, 1997a.

IEEE.

E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and appli-

cations. AI Memo 1602, Massachusetts Institute of Technology, 1997b.

J. Platt. Probabilistic outputs for support vector machines and comparison to regu-

larized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuur-

mans, editors, Advances in Large Margin Classifiers, Cambridge, MA, 2000. MIT

Press. URL citeseer.nj.nec.com/platt99probabilistic.html.

J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in

Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.

B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector

algorithms. Neural Computation, 12:1207–1245, 2000.

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.

Estimating the support of a high-dimensional distribution. Neural Computation,

13(7):1443–1471, 2001.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classifica-

tion by pairwise coupling. Journal of Machine Learning Research, 5:975–1005, 2004.

URL http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf.

30

http://www.csie.ntu.edu.tw/~cjlin/papers/svrprob.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
citeseer.nj.nec.com/platt99probabilistic.html
http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

	Introduction
	Formulations
	C-Support Vector Classification
	-Support Vector Classification
	Distribution Estimation (One-class SVM)
	-Support Vector Regression (-SVR)
	-Support Vector Regression (-SVR)
	Performance Measures
	Classification
	Regression

	Solving the Quadratic Problems
	The Decomposition Method for C-SVC, -SVR, and One-class SVM
	Stopping Criteria and Working Set Selection for C-SVC, -SVR, and One-class SVM
	Convergence of the Decomposition Method
	The Decomposition Method for -SVC and -SVR
	Analytical Solutions
	The Calculation of b or
	Initial Values

	Shrinking and Caching
	Shrinking
	Caching
	Reconstructing the Gradient
	Is Shrinking Always Better?
	Computational Complexity

	Unbalanced Data
	Multi-class classification
	Parameter Selection
	Probability Estimates

