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Abstract 

 

Background: Microarray technology is a widely used approach for monitoring 

genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray 

hybridizations representing many different experimental conditions on Affymetrix
TM

 

ATH1 gene chips alone. This huge amount of data offers a unique opportunity to 

infer the principles that govern the regulation of gene expression in plants.  

Results: We used bioinformatics methods to analyze publicly available data obtained 

using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were 

normalized and filtered to eliminate low-quality hybridizations. We classified and 

compared control and treatment hybridizations and determined differential gene 

expression. The largest differences in gene expression were observed when 

comparing samples obtained from different organs. On average, ten-fold more genes 

were differentially expressed between organs as compared to any other experimental 

variable. We defined “gene responsiveness” as the number of comparisons in which 

a gene changed its expression significantly. We defined genes with the highest and 

lowest responsiveness levels as hypervariable and housekeeping genes, respectively. 

Remarkably, housekeeping genes were best distinguished from hypervariable genes 

by differences in methylation status in their transcribed regions. Moreover, 

methylation in the transcribed region was inversely correlated (R
2
=0.8) with gene 

responsiveness on a genome-wide scale. We provide an example of this negative 

relationship using genes encoding TCA cycle enzymes, by contrasting their 

regulatory responsiveness to nitrate and methylation status in their transcribed 

regions. 



 

Conclusions: Our results indicate that the Arabidopsis transcriptome is largely 

established during development and is comparatively stable when faced with external 

perturbations. We suggest a novel functional role for DNA methylation in the 

transcribed region as a key determinant capable of restraining the capacity of a gene 

to respond to internal/external cues. Our findings suggest a prominent role for 

epigenetic mechanisms in the regulation of gene expression in plants. 



 

Background 

Understanding the regulation of gene expression is essential to understand the 

form and function of living systems. Microarray technology has been widely used in 

many organisms to understand genome-wide changes in gene expression in response 

to treatments [1], in different organs [2], cell-types [3] and along developmental time 

series [4]. Therefore, a large amount of microarray data representing many different 

biological conditions has accumulated over recent years. This data has been used 

successfully to hypothesize on gene function on a global scale in different organisms, 

such as yeast and C. elegans [5-7], and to suggest shared regulatory mechanisms. 

Promoters of genes with strongly correlated expression patterns in multiple 

experiments are likely to be bound by a common transcription factor [8], and 

conserved regulatory motifs have been identified based solely on expression data [9]. 

From a systems view, however, we believe that this data has been underutilized as a 

resource to understand the basic rules of gene expression.  

To learn the general rules that govern gene expression in plants, we took 

advantage of a large microarray database available for Arabidopsis in the 

NASCarrays database [10]. Using this data, we defined the internal and external cues 

that regulate the expression of all of the Arabidopsis genes that are represented in the 

Affymetrix ATH1 gene chips. We quantified the effect of the different experimental 

conditions on gene expression, which revealed tissue type to be the most influential 

variable. We also analyzed different structural features and correlated it with the 

capacity of the genes to respond to the different stimuli. We found evidence for a 

mechanistic relationship between DNA methylation in the body of the gene (i.e., the 



 

transcript region) and the regulation of gene expression, thus assigning a novel and 

important role for the methylation of the body of the gene in eukaryotic genomes.  



 

Results and Discussion 

The Arabidopsis transcriptome is robust to most perturbations but 

strongly influenced by organ type 

In an effort to discover new principles that govern gene expression in 

Arabidopsis thaliana, we integrated and analyzed publicly available whole-genome 

microarray data for this model plant. From this data, we defined 474 biologically 

relevant comparisons (i.e. control vs. treatment) as described in Materials and 

Methods (Additional File 1). These comparisons spanned a wide variety of 

experimental conditions and plant organs (Figure 1). We wished to evaluate the 

effect of the different experimental factors that defined each comparison on genome-

wide gene expression patterns. To do so, we defined differential gene expression 

using the RankProducts method [11]. This method outperformed other methods to 

determine regulation of gene expression in previous studies [11, 12] and in our own 

evaluation (see Materials and Methods), particularly in datasets with a small number 

of replicates.  

We first examined the number of differentially regulated genes per 

comparison. We found their distribution to be far from normal. As shown in Figure 

2A, some comparisons exhibit more than 4,000 differentially expressed genes. These 

outliers were exclusively comparisons between different organs. In fact, organ type 

was the strongest experimental factor contributing to the number of differentially 

expressed genes. Other experimental factors, regardless of their nature, showed an 

approximately 10-fold smaller impact on gene expression with an average of 337 

genes regulated per comparison (Figure 2B). Moreover, approximately 10% of the 



 

Arabidopsis genes did not respond to any of the stimuli in the dataset and were only 

differentially expressed between organ samples. Thus, organ is by far the most 

important factor in determining genome-wide expression levels. Furthermore, the 

upper 5
th

  percentile (ordered by the number of genes regulated) of the 77 mutant vs 

wt comparisons involved only genes whose mutations have well documented 

developmental phenotypes. These genes were AP2-6[13], ARR21[14], 

GLABROUS1[15] and LFY-12 mutations [16]. They regulated 1475, 1420, 1379 

and 1362 genes, respectively – a much more than the category average  (471 genes). 

These results indicate that global gene expression patterns are established during 

plant development. The results also suggest that the Arabidopsis transcriptome is 

robust to most perturbations, with only an estimated 1.5% of the genome on average 

responding in a single experiment to experimental factors such as chemical or 

hormone treatments, pathogen challenges or environmental stress. A detail of the 

categories in which each of the Arabidopsis genes responds is presented in 

Additional File 2. Additional Files 3 to 10 contain the genes that respond in 

exclusively one category, including organ type. 

Given its impact on global gene expression levels, we next wished to evaluate 

the importance of organ type in the context of typical experimental factors that are 

tested in the laboratory. We compared the number of genes responding in shoots or 

roots for each of the nine treatments in the AtGenExpress abiotic stress series. On 

average, only 13% of the total genes that responded to a treatment responded in both 

organs. By contrast, a much higher proportion of genes (88%) were regulated by the 

treatment in an organ-specific manner (Additional File 11). This data indicate that 

plant responses to external stimuli are strongly organ-dependent and underscore the 



 

need for a more thorough survey of organ-specific and, by extension, cell-specific 

responses in Arabidopsis and other plants [3].  

Housekeeping and hypervariable genes possess marked structural 

differences.  

To identify properties that explain the capacity of a gene to respond to 

stimuli, we ranked genes based on the number of comparisons in which they are 

differentially expressed. As shown in Figure 2C, the Arabidopsis genome contains 

genes that are regulated in a wide range of comparisons, with an average of 14 

comparisons, or 3% of the total comparisons in our dataset. The underlying data is 

provided in Additional File 12. We expect structural differences to be maximized at 

the extremes of this distribution. We defined housekeeping genes based on three 

criteria: (1) genes that were not differentially expressed in any of the 474 

comparisons, (2) genes with signal intensities higher than the median intensity across 

the entire dataset and (3) genes with the lowest signal variability (measured with the 

interquartile range, see Materials and Methods) across the entire dataset. In contrast, 

we defined hypervariable genes based on the following three criteria: (1) genes that 

were within the top 1% of the gene responsiveness distribution, (2) genes with the 

largest signal variability, and (3) genes that show differential expression by stimuli 

from six of the eight categories described in Figure 1A. These criteria defined 384 

housekeeping genes and 123 hypervariable genes (Additional files 13 and 14). 

 A previous study positively correlated expression levels with gene size in 

plants [17]. To understand how gene responses to stimuli relate to gene size and 

other structural features, we analyzed the structure of housekeeping and 



 

hypervariable genes. Housekeeping genes were significantly larger and had more 

introns than do hypervariable genes and were above genome averages for both 

criteria (Table 1). By contrast, hypervariable genes were significantly shorter and 

contained fewer introns than average (Table 1). Interestingly, a functional annotation 

of the hypervariable gene set indicates that it is enriched for genes involved in 

responses to internal and external stimuli (Additional File 15). Most hypervariable 

genes were plant specific as defined in a previous study [18], and the set was 

enriched for genes that code for unstable transcripts [19] (Table 1). These results 

suggest that plants favored the evolution of small, hypervariable genes to respond 

quickly and economically to multiple environmental signals. 

Eukaryotic genes are transcriptionally regulated by the coordinated 

interaction of multiple protein factors that interact with discrete binding sites and 

with each other [20]. These binding sites are usually located upstream of the 

transcribed region they regulate [20]. The promoters of hypervariable genes often 

have a TATA-box sequence and contain a larger number of predicted transcription 

factor binding sites as compared to the housekeeping genes or the genome average 

(Table 1 and Additional File 16). These data suggest that the presence of a TATA 

box and the number of transcription factor binding sites in the promoter region of 

some of the most responsive genes in Arabidopsis may explain their capacity to 

respond to stimuli, as was previously found in an analysis of a smaller expression 

dataset [21]. However, it is clear that this simple rule does not always apply and that 

other factors are necessary to explain gene expression responses. 

In addition to gene structure, epigenetic mechanisms such as DNA 

methylation are known to have an impact on gene expression in eukaryotes, 



 

particularly in heterochromatic regions [22, 23]. To evaluate the potential role of 

DNA methylation in the gene expression responses observed for housekeeping and 

hypervariable genes, we analyzed the methylation patterns of these two groups of 

genes. We used two recently published genome-wide methylation data sets [24, 25] 

to analyze methylation in the promoter and transcribed regions of each gene. Using 

the methylome data produced by Zhang et al. [24], we found that a large proportion 

of housekeeping genes were methylated in their transcribed regions (a significant 

enrichment compared to the expected genome frequency; p=1.5E-35, Table 1). By 

contrast, only 8% of the hypervariable genes were methylated in their transcribed 

regions (a significant depletion; p=2E-10, Table 1). Similar results were obtained 

with an independently generated methylome data set [25]. These results suggest that 

the capacity of Arabidopsis housekeeping and hypervariable genes to respond to 

stimuli not only depends on structural features in their promoter or transcribed 

regions, such as transcription factor binding sites, but may also have an important 

epigenetic component. 

Transcript region methylation is the most important factor to explain 

genome-wide responses to internal/external stimuli. 

To evaluate the importance of these features for gene expression responses on 

a genomic scale, we performed a regression analysis of the gene responsiveness for 

all Arabidopsis genes as a function of each of the structural features described above. 

We used a linear model of the form: Y ~ αX + β, where Y was the observed gene 

responsiveness of all genes and X was the structural feature under evaluation (e.g. 

presence of TATA-box, cis-acting binding sites in the promoter or gene body 



 

methylation). Thus, the effects detected were free from any bias arising from gene 

selection, as could be the case when analyzing this relatively small group of 

housekeeping and hypervariable genes.  

Notably, using the two independently generated methylome datasets [24, 25], 

gene responsiveness showed a remarkably high negative correlation with the 

presence of methylation in the transcribed region of the gene. Both datasets 

generated models with a coefficient of determination (R
2
) of 0.8 (share of explained 

variability, Figure 3A-B). A similar result was obtained using average fold-change ≥ 

|2|  (treatment versus control) as a criterion to determine gene responsiveness 

(Additional Files 17 and 18). This correlation was independent of the type of 

experimental factor, as similar trends were observed when analyzing each 

experimental category individually for both methylome datasets (Figure 3C-F and 

Additional File 19). Next, to transcript region methylation, the presence of a TATA-

box was the second best factor to explain gene responsiveness, and it had a positive 

effect. R
2 

for two definitions of TATA-box [26, 27] were 0.49 or 0.68.  Two factor 

models that included transcript region methylation and the presence of a TATA-box 

slightly improved the R
2
 over those obtained with methylation alone (Table 2). Two 

factor ANOVA models (Additional File 20) confirmed the stronger effect of gene 

body methylation on responsiveness, as determined by the Tukey comparison 

procedure [28]. However, goodness of fit estimation by the Bayesian Information 

Criteria [29] suggests that additive models, including TATA-box and methylation, 

are better than one-factor ANOVA models. (Additional File 20). Interestingly, this 

also suggests that the effect of TATA-box and methylation are independent, as 

interaction terms are not significant in these models (not shown). None of the other 



 

structural features (gene size, presence of introns, number of binding sites, etc) 

yielded models with such high R
2
 on a genomic scale. Thus, gene body methylation 

and, to a lesser extent, TATA-box presence explained gene responsiveness on a 

global scale. It is not possible, however, to infer from this data the mechanistic 

relationships between TATA-related factors, gene body methylation status and 

regulation of gene expression. 

The effect of DNA methylation on gene responsiveness could be explained by 

a simple transcriptional gene silencing effect [22, 23]. Silencing a gene would render 

it unable to be regulated. If so, transcript region methylation should correlate with 

expression levels. Comparing the frequency of methylation to the median expression 

level of the whole dataset revealed no such trend (Figure 4). The most and the least 

highly expressed genes are likely to lack methylation within their body, as previously 

reported [25]. Similarly, no correlation was found between the presence of a TATA-

box and gene expression levels. (Figure 4). Moreover, no relationship was evident 

between expression level and gene responsiveness in our data set (Additional File 

21). 

We also evaluated the relationship between the presence of modified histones 

and gene responsiveness. We used a recently published genomic survey of 

trimethylation in lysine 27 of histone H3 (H3K27me3) f[30]. We found a weak 

correlation between the frequency of H3K27me3 gene targets and gene 

responsiveness, with an R
2
 of 0.12 (Figure 3F and Additional File 19). This finding is 

consistent with the hypothesis that H3K27me3 mostly acts in a DNA methylation-

independent manner, as previously suggested [30]. Other histone modifications, such 

as H3K4 or H3K9 methylation [31] or combinations thereof [32], may be related to 



 

gene body methylation in Arabidopsis, thus “marking” the corresponding chromatin 

region for or against the regulation of gene expression [33]. 

Gene body methylation and regulation of expression by nitrate in TCA 

cycle genes. 

As a case-study and to provide a concrete example of the influence of 

methylation patterns on the regulation of gene expression, we focused on a discrete 

biological process and experimental factor: nitrate. Nitrate has been shown to be a 

signal to regulate gene expression in plants [34]. We chose four microarray 

experiments in which wild-type seedlings were treated with different nitrate 

concentrations. These nitrate experiments were not included in the microarray 

database used in the previous sections. We found that nitrate regulates many genes in 

central metabolic pathways such as the TCA cycle [34-37]. We analyzed 

responsiveness and nitrate regulation for all genes coding for TCA cycle enzymes. 

Most of the genes (29 out of 36, data not shown) did not respond to the nitrate 

treatments, as expected due to the robustness of expression patterns in Arabidopsis 

(see Figure 2B). Among the genes regulated by nitrate, we found a malate 

dehydrogenase gene (MDH, At3g47520), two genes coding for NAD
+
 dependent 

isocitrate dehydrogenases (At5g03290 and At4g35260) and a putative NADP
+
 

dependent isocitrate dehydrogenase (At1g65930) (Table 3). Remarkably, these four 

genes were classified as unmethylated in studies by both Zhang et al. [24] and 

Zilberman et al. [25].  Moreover, body methylated genes were enriched among the 

analyzed genes that were not regulated by nitrate (Table 3). For instance, among 

eight genes coding for malate dehydrogenase that are not regulated by nitrate, five 

are methylated according to the two methylome datasets. This is a much higher 



 

frequency than is expected by chance (p<0.05), as only 20-34% of the genes were 

methylated according to the two methylome datasets. The same was true for the 

isocitrate dehydrogenases, with enrichment of methylated genes for those that did not 

respond to the nitrate treatment (p<0.05). These results agree with the proposed 

relationship between gene body methylation and the regulation of gene expression in 

response to regulatory signals (in this case, nitrate). Moreover, it suggests gene body 

methylation plays a role in the regulation of gene expression in physiological 

processes such as the reprogramming of carbon metabolism in response to nitrogen 

nutrient availability [38].  

Conclusions 

 

The analysis of the large and heterogeneous whole-genome microarray 

dataset available in the public domain proved useful to evaluate principles that 

govern regulation of gene expression in plants. Our global and systematic analysis of 

the quantitative effect of different experimental factors (e.g., mutations, stress and 

organ identity) on the plant transcriptome revealed the key role of developmental 

processes for establishing mRNA levels throughout the plant. This process in turn 

determines how cells, organs and tissues respond to exogenous cues. Our data 

indicate that plant responses to external stimuli are strongly organ-dependent and 

underscore the need for a more thorough survey of organ-specific and, by extension, 

cell-specific responses in Arabidopsis and other plants [3].  

The second part of our analysis provided a weighted insight into the role of 

different molecular mechanisms in the global regulation of gene expression in 

Arabidopsis. The data indicate that DNA methylation within the body of Arabidopsis 



 

genes is a key factor that may determine or negatively influence the capacity of 

genes to respond to internal or external cues. The presence of a TATA-box may 

favor gene responsiveness but to a lesser extent than the negative effect of DNA 

methylation. Surprisingly, our data indicate that other gene structural features (e.g., 

number of cis-acting elements, gene size, presence and number of introns) are less 

important than DNA methylation and the presence of a TATA-box. These results 

highlight the importance of epigenetic mechanisms for the global control of gene 

expression. As a concrete example, we found consistency between regulation by an 

external stimulus (nitrate) and gene body methylation for a discrete biological 

process, the TCA cycle, beyond what would be expected by chance. The results 

presented here suggest a model whereby gene body DNA methylation restrains the 

ability of a gene to be regulated, regardless of regulatory signals (e.g., binding sites 

for specific transcription factors in the promoter region). This effect would not be 

directly dependent on basal gene expression levels. Moreover, our results provide a 

plausible functional role for the DNA methylation that is found in the body of a large 

number of Arabidopsis genes. This new role differs from the proposed role for DNA 

methylation in suppressing spurious transcriptional initiation [25, 39] and reinforces 

the link between the regulation of gene expression and DNA methylation in 

eukaryotes.  



 

Methods 

Data processing 

The CEL data files comprising all ATH1 Affymetrix hybridizations through 

the end of 2005 were obtained from NASCArrays through the AffyWatch 

Subscription Service. This data comprised 1887 hybridizations corresponding to 108 

different experiments. The entire hybridization set was normalized using the Robust 

Multiarray Analysis method [40] available from Bioconductor 

(http://www.bioconductor.org). Once normalized, the hybridizations were quality-

controlled using the method devised by Persson et al [41]. Briefly, this method uses a 

Kolmogorov-Smirnov goodness-of-fit test to evaluate whether the distribution of 

deleted residuals for an individual hybridization deviates from a “t” distribution. 

According to Persson et al [41], this occurs when the value of the D statistic from the 

goodness-of-fit test is more than 0.15. The CEL files with a D statistic over this cut-

off value were excluded from the analysis. This step resulted in the exclusion of 186 

CEL files.  

For the analysis of differential expression, the remaining 1701 hybridizations 

were mapped to their corresponding experiments. Controls and biologically 

meaningful tests were identified and grouped with their replicates. Comparisons in 

which the control or treatment hybridizations had less than 2 replicates were 

discarded. This process resulted in a list of 474 biologically meaningful comparisons 

(control versus test), including 1295 hybridizations. In the case of tissue 

comparisons, we used rosette leaves as a control, and all other tissues were 

considered tests. Rosette leaves were chosen as the reference because they are the 



 

prototypical organ system [2]. We classified the comparisons according the 

experimental variable involved using the criteria defined by TAIR [42], and 

according to the RNA source organ (Figure 1) 

Differential expression analysis 

The comparisons were analyzed for differential gene expression using the 

RankProducts method [11], implemented as a Bioconductor package [43]. This 

method outperformed other methods to define differential expression in a study 

comparing ten different methods [12], particularly in high-noise, low-replicate 

datasets. Our comparisons have a low number of replicates (average=2.7) and a high 

variability (pooled variance of the whole dataset=4.04). We also evaluated the 

performance of RankProducts as compared to other popular alternative methods 

based on biological criteria. We defined regulation using RankProducts, average fold 

change and t-test with different FDR corrections for multiple testing [44, 45]. To 

evaluate the methods, we randomly chose five test comparisons from different 

experimental categories (e.g. biotic, abiotic, tissue).  

We evaluated the functional coherence of the differentially expressed genes 

by the different methods by evaluating enriched gene ontology (GO) terms in the 

resulting lists. For most of the comparisons tested, visual inspection revealed 

enriched GO terms that were obviously related to the experimental factor. This was 

not the case for the other methods. As an example, 245 genes were found to be 

differentially expressed in the comparison DO.1.1 (Additional File 1). Out of these 

245 genes, 217 were previously identified as regulated in these experiments using a 

different method in a prior study [46]. In addition, the 140 down-regulated genes 



 

determined by RankProducts showed an overrepresentation of “transport” and other 

functional terms previously known to be related to the experimental factor [46]. 

Similarly, the abscisic acid response evaluated in comparison AQ.4.4 (Additional 

File 1) identified 241 differentially expressed genes. Among the up-regulated genes, 

we found that the ‘abscisic acid response’ functional term was overrepresented.  

With the results of the differential expression analysis, a “regulation matrix” 

was created. This matrix contained the p-value for the down- and up-regulation of all 

of the ATH1 Affymetrix chip probes across the 474 comparisons. The cut-off for 

defining a probe as differentially expressed was 0.05. The complete data file with 

ratios is available from http://virtualplant.bio.puc.cl/cgi-bin/Lab/download.cgi. 

Additional data files are available upon request. 

Housekeeping and hypervariable gene definition 

The least responsive genes (housekeeping genes) were defined as follows: 

first, we selected genes which did not show differential expression in any comparison 

(5652 genes). Second, these genes were filtered for expression above the median of 

the entire NASC dataset (1758 genes). Third, we choose only those having a signal 

difference between the 1
st
 and 3

rd
 quartile (interquartile range) that was in the bottom 

5 percentile of the signal interquartile ranges from the whole dataset. This ensured 

the selection of 384 expressed Arabidopsis genes that exhibit the lowest expression 

variability.  

 For the most responsive genes (hypervariable genes), we first choose genes 

that were regulated in 86 or more comparisons, corresponding to the top 1% most 

responsive genes from Figure 2C. Second, we selected genes that were regulated in 



 

at least six out of the eight categories defined in Figure 1A to avoid any bias due to 

large categories (e.g., abiotic stress experiments). We did not use an expression 

cutoff, since as expected hypervariable genes were sufficiently expressed, with a 

median signal of 8.4 across the NASC dataset (the global median is 7.4). From the 

185 genes selected by these criteria, we choose those with a signal interquartile range 

in the upper 5% of the entire dataset. Thus, we defined a group of 123 “hypervariable 

genes”. 

Structural and phylogenetic analyses and correlation with gene 

responsiveness 

Gene structural features (gene, CDS, exon, intron lengths and numbers)- were 

obtained from the TAIR 6.0 Arabidopsis genome [42]. Phylogenetic classifications 

of the genes were obtained from the Plant-Specific Database [18]. Methylation status 

of the different genes (body methylated, body unmethylated and promoter 

methylated) was obtained from Zhang et al. [24] or Zilberman et al. [25]. TATA-box 

presence or absence in the promoter region of Arabidopsis genes was obtained from 

Molina and Grotewold[26]. The number of transcription factor binding sites in gene 

promoters was calculated from the data in the AtCis Database from AGRIS [47]. 

Unstable transcripts were extracted from the data generated by Gutierrez et al. [19]. 

All data were processed using custom-made scripts in R (http://www.R-project.org) 

and Perl languages. Statistical analyses and graphs were done in R, GraphPad Prisma 

4.0 software or Microsoft Excel.  



 

Statistical and regression analysis.  

Calculation of significant enrichment or depletion was done in R using the 

hypergeometric distribution. t-tests were carried out with the GraphPad Prisma 4.0 

software. Simple and multiple linear regression models used to predict gene 

responsiveness as a function of various structural parameters were done in R. We 

used simple models of the form: Y ~ αX + β, where Y, the response variable, is the 

gene responsiveness and X is the value of the structural feature under evaluation. In 

the case of categorical features, such as methylation or the presence of TATA-box, X 

represented the frequency of the feature in a group of genes sharing the same 

responsiveness. For multiple linear regressions, we used models of the form: Y ~ αX 

+ βZ + γW… where Y was the gene responsiveness and X, Z, W, etc. corresponded to 

different features to evaluate. Models were fitted using the lm function from the R 

statistical software. We used the R
2
 parameter to evaluate the quality of the model, 

since R
2
 represents the extent of data variability explained by the model. As a 

complementary approach for categorical features, we used one factor ANOVA 

models. They have the form Y ~ αX + β, where X was a factor encoding the presence 

or absence of those features at two different levels. We used the ‘aov’ function in R 

to fit the model. We used the F statistic to estimate the significance of the 

contribution of the factors to the response. To estimate the differences between the 

levels of the factors, we followed the Tukey procedure, using the ‘glht’ function from 

the ‘multcomp’ package in R. The Bayesian Information Criteria was calculated in R 

using the ‘BIC’ function in the package ‘nlme’. Graphs were done in R, GraphPad 

Prisma 4.0 software or Microsoft Excel.  



 

Gene body methylation and regulation by nitrate for TCA cycle genes. 

We retrieved the genes corresponding to the TCA cycle from AraCyc [48]. We 

then determined the gene responsiveness of these genes in four previously published 

microarray data sets [34-37] that were not included in the NASCarrays database and  

were therefore not used to derive our genome-wide conclusions. We intersected the 

methylation status [24, 25] and regulation by nitrate of the genes encoding malate 

dehydogenases and isocitrate dehydrogenases using the VirtualPlant software 

platform (www.virtualplant.org). Statistical analysis of enrichment was performed as 

described above. 
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Figure Legends 

Figure 1.  Classification of experiments from the NASCarrays database  

Pie charts with the classification of microarray experiments according to the 

experimental factor categories defined by TAIR (A) or the organ used to extract 

RNA to perform the microarray experiments (B). 

Figure 2. Global characteristics of the Arabidopsis transcriptome. 

A) Histogram of the number of genes (X-axis) regulated in a given number of 

comparisons (Y-axis). B) Average number of genes regulated by each experimental 

category as defined in Figure 1A. C) Histogram of the number of comparisons (X-

axis) for which the specified number of genes (Y-axis) show significant regulation.  

 

Figure 3. Correlation between methylation and gene responsiveness 

(A) Plot of the frequency of methylated genes (according to Zhang et al. [24]; X-

axis) within a group of genes against the number of comparisons in which that group 

of genes is regulated (Y-axis). The dotted line represents the regression line. B) Same 

as (A) except using data from Zilberman et al [25]. C) to E). Same as (A) except with 

the different experimental categories defined in Figure 1A, using methylome data 

from Zhang et al [24]. G) Same as (A) except the X-axis represents the frequency of 

genes that are the target of trimethylation on H3K27 [30].  

Figure 4. Lack of linear correlation between expression levels and gene body 

methylation or TATA-box presence 

(A) Plot of the median expression level across the whole NASC arrays dataset in 

10% bins (X-axis) versus the frequency of methylated genes in the bin (Y-axis), as 



 

determined by Zhang et al. [24]. (B) Same as (A), except using data from Zilberman 

et al. [25]. C) Same as (A), except the Y-axis represents the frequency of TATA-

containing genes according to the MotifSearch definition  [26]. D) Same as (C), but 

using the PlantProm definition [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Tables 

Table 1.  Contrasting features of housekeeping and hypervariable genes. 

Gene feature Housekeeping Hypervariable Genome 

CDS length (bp)a 2624 (s.e = 89)  1178 (s.e.= 73) 1931 (s.e.= 8) 

Gene length (bp)a 3117 (s.e =87)  1493 (s.e.= 78) 2229 (s.e.= 8) 

Total exon length (bp)a 1941 (s.e.= 52)  1169 (s.e.= 50) 1568 (s.e. 6) 

Total intron length (bp)a 1173 (s.e.= 52)  323 (s.e= 44) 660 (s.e.= 4) 

Number of exons (pb)a 8 (s.e.= 0.31) 3 (s.e.=0.24) 5 (s.e = 0.03) 

Genes without introns 6% (p=5E-16) 33% (p=0.0007) 28% 

Average number of transcription 

factor binding sitesb 
27±1.2 (p<0.01) 46 ± 1.8 (p<0.0001) 30±0.1 

TATA-containing genesc 5% (p = 1.3E-6) 45% (p= 6.1E-15) 15% 

Genes coding for unstable 

transcriptsd 
0% (n.a.) 8% (p= 9E-11) 1% 

Shared among eukaryotese 18% (p=0.002) 7% 14% 

Plant-specifice 11% 34% (p=2E-10) 14% 

Body methylationf 63% (p=1.5E-35) 8% (p=2E-10) 34% 

Promoter methylationf 3% 3% 5% 

Body methylationg 36% (p=9.1E-21) 2% (p=3.8E-8) 20% 

 

The first column lists various features analyzed for housekeeping genes (second 

column), hypervariable genes (third column) and the whole genome (fourth column). 

Rows report average and standard error or percentage values. P values for significant 

(p<0.01) enrichment or depletion as compared to the genome occurrence are shown 

in parenthesis. a, differences between all groups are significant (p<0.01) as 

determined by ANOVA. b, average number of cis-acting regulatory elements as 

defined in the AGRIS database [47]. p-value was determined by a t-test. C,  presence 

of TATA-box as determined by the MotifSearch algorithm [26]. Similar results were 

obtained with an alternative TATA-box definition [27]. d, unstable transcripts as 

defined in [19]. e, phylogenetic profiles as defined previously [18]. Only 

significantly enriched profiles are listed. f, methylation patterns as determined in 

[24]. g, methylation patterns as determined in [25]. n.a., not applicable.



 

Table 2.  Results of the simple and multiple linear regression analyses 

Explanatory variable(s) Data Source r2
 p Coefficient 

0.8 <2E-16 n.r. 
Methylation frequency 

[24] 

 

[25] 0.8 <2E-16 n.r. 

Frequency of genes 

target of H3k27me3 
[30] 0.12 0.000207 n.r. 

Gene size TAIR Genome v6.0 0.02 >0.01 n.r. 

Cis-acting elements [48] 0.05 >0.01 n.r. 

TATA-box frequency 

(MotifSearch, [26]) 

 

(PlantProm, [26]) 

0.49 

 

0.68 

<2E-16 

 

<2E-16 

n.r. 

 

n.r. 

[24]+  (MotifSearch, [26]) 0.84 

<2E-16
a  

 

0.0002
b
 

-201.5
a 

 

35
b
 

[24] + (PlantProm, [26]) 0.86 

<2E-16
a 

 

1.00E-09
b
 

-168
a 

 

50.5
b
 

[25] + (MotifSearch, [26]) 0.87 

2.00E-16
a 

 

5.00E-09
b
 

-158.6
a 

 

54.8
b
 

Methylation + TATA-

box 

[25] + (PlantProm, [26]) 0.84 

<2E-16
a 

 

0.0006
b
 

-194.3
a 

 

39
b
 

 

Column 1 reports the explanatory variables used to model gene responsiveness. 

Column 2 indicates the source of the data (reference). Columns 3 and 4 report the 

different statistics obtained with the linear regression. n.r., not reported; n.d., not 

determined. a, statistics for methylation variable. b, statistics for TATA-box variable. 

Column 5 shows the coefficients from the linear regression analysis. 

 

 

 

 



 

Table 3. Relationship between the methylation status and nitrate regulation of 

TCA cycle genes. 

AGI number Gene Annotation
 Responsiveness to 

nitrate
 

Methylation 

status
a
 

At3g47520 
MDH (malate dehydrogenase); malate 

dehydrogenase 
3 U 

At1g04410 malate dehydrogenase, cytosolic, putative 0 A
 

At1g53240 malate dehydrogenase (NAD), mitochondrial 0 M 

At2g22780 
PMDH1 (PEROXISOMAL NAD-MALATE 

DEHYDROGENASE 1); malate dehydrogenase 
0 M 

At3g15020 
malate dehydrogenase (NAD), mitochondrial, 

putative 
0 U 

At5g09660 

PMDH2 (PEROXISOMAL NAD-MALATE 

DEHYDROGENASE 2),PMDH2 

(PEROXISOMAL NAD-MALATE 

DEHYDROGENASE 2); malate dehydrogenase 

0 M 

At5g56720 malate dehydrogenase, cytosolic, putative 0 M 

At5g58330 
malate dehydrogenase (NADP), chloroplast, 

putative 
0 M 

At5g43330 malate dehydrogenase, cytosolic, putative 0 U 

At5g03290 
isocitrate dehydrogenase, putative / NAD+ 

isocitrate dehydrogenase, putative 
2 U 

At4g35260 
IDH1 (ISOCITRATE DEHYDROGENASE 1); 

isocitrate dehydrogenase (NAD+) 
2 U 

At1g65930 
isocitrate dehydrogenase, putative / NADP+ 

isocitrate dehydrogenase, putative 
1 U 

At3g09810 
isocitrate dehydrogenase, putative / NAD+ 

isocitrate dehydrogenase, putative 
0 M 

At4g35650 
isocitrate dehydrogenase, putative / NAD+ 

isocitrate dehydrogenase, putative 
0 U 

At5g14590 
isocitrate dehydrogenase, putative / NADP+ 

isocitrate dehydrogenase, putative 
0 M 

At1g54340 
ICDH (ICDH); isocitrate dehydrogenase 

(NADP+) 
0 M 

 

This table provides the AGI number, the gene annotation, regulation by nitrate as 

determined from four independent experiments (see main text) and the methylation 

status according to the two methylome datasets used in this work. This table includes 

all the different malate dehydrogenase and isocitrate dehydrogenase isozyme-coding 

genes present in the Arabidopsis genome, according to VirtualPlant 



 

(http://www.virtualplant.org). 
a
Methylation code: U, unmethylated in both datasets; 

M, methylated in both datasets; A, ambiguous according to Zilberman et al. [25]  but 

unmethylated according to Zhang et al. [24]. 

 

Additional Files 

Additional File 1.xls (Microsoft Excel file)  

Control vs. tests comparisons 

List of the analyzed 474 comparisons in the NASCarrays database, annotated 

according to the experimental factor and plant structure categories. NASC 

experiment numbers are provided. 

 

Additional File 2.xls (Microsoft Excel file) 

Gene responsiveness by categories 

Table detailing the number of experiments, within the eight experimental categories, 

in which each Arabidopsis gene is regulated. The number in parenthesis in the header 

of the Table indicates the total number of experiments in each category. 

  

Additional Files 3 to 10.xls (Microsoft Excel files) 

Genes regulated specifically in one experimental category 

Each file provides the individual genes responding exclusively in abiotic, biotic, 

ecotype, chemical, hormone, mutant, nutrient or organ comparisons, respectively. 

 

Additional File 11.pdf (Adobe Acrobat file) 

Importance of organ type in the response to abiotic stress in Arabidopsis  

Percentage of genes responding to various stresses in either roots, shoots or both. 

Data corresponds to the AtGenExpress Abiotic Stress series present in the 

NASCarrays database. The black zone indicates the percentage of genes responding 

only in roots; the white zone indicates those responding only in shoots, and the black 

squares region indicates the genes responding in both tissues  

 



 

Additional File 12.xls (Microsoft Excel file) 

Gene responsiveness 

 Gene responsiveness as determined by the Rank Products and fold-change method. 

 

Additional File 13.xls (Microsoft Excel file) 

Housekeeping and hypervariable genes and their methylation status (1) 

List of Housekeeping and hypervariable genes, classified according their methylation 

status as defined in: Zhang X, et al: Genome-wide high-resolution mapping and 

functional analysis of DNA methylation in arabidopsis. Cell 2006, 126(6):1189-

1201. Gene annotation was provided by the VirtualPlant system 

(http://www.virtualplant.org). 

Additional File 14.xls (Microsoft Excel file) 

Housekeeping and hypervariable genes and their methylation status (2) 

List of Housekeeping and hypervariable genes, classified according their methylation 

status as defined in: Zilberman et al: Genome-wide analysis of Arabidopsis thaliana 

DNA methylation uncovers an interdependence between methylation and 

transcription. Nat Genet 2007, 39(1):61-69.. Gene annotation was provided by the 

VirtualPlant system (http://www.virtualplant.org) 

 

Additional File 15.xls (Microsoft Excel file) 

Function of housekeeping and hypervariable genes 

Analysis of over-representation of gene ontology functional terms in housekeeping 

and hypervariable genes (performed in VirtualPlant - http://www.virtualplant.org) 

 

Additional File 16.pdf (Adobe Acrobat file) 

Enrichment of cis-acting motifs in the promoter of hypervariable genes  

Frequency distribution of the number of predicted transcription binding sites in the 

promoter of housekeeping and hypervariable genes and the whole genome. The 

genes were ranked according to the number of cis-acting regulatory elements in their 

promoters according to the AGRIS database (X-axis). The points represent the 

fraction of genes in a bin of 10 motifs.  



 

 

Additional File 17.xls. (Microsoft Excel file). 

Correlation between gene responsiveness as determined by the fold-change 

method and gene body methylation 

Table listing gene responsiveness as determined by the fold-change method (≥ |2|), 

and the corresponding frequencies of methylated genes. 

 

Additional File 18.pdf (Adobe Acrobat file) 

Plot of the correlation between gene responsiveness determined by the fod-

change method versus gene body methylation 

This graphs shows the linear correlation between gene responsiveness as determined 

by fold change ((≥ |2|) and gene body methylation.  

 

Additional File 19.xls (Microsoft Excel file) 

Results of simple regression models, given by experimental category 

Description is as Table 2, see main text. 

 

Additional File 20.xls (Microsoft Excel file) 

ANOVA models for the effect of methylation and TATA-box presence on gene 

responsiveness, by category of experimental treatment 

The models have the form Y ~ aX + b, where X was a factor encoding the presence 

or absence of those features as two different levels. We used the ‘aov’ function in R 

to fit the model.  The F statistic estimates the significance of the contribution of the 

factors to the response. The differences between the levels of the factors were 

estimated by the Tukey procedure, using the ‘glht’ function from the ‘multcomp’ 

package in R. This is equivalent to comparing the coefficients of the factors. The 

Bayesian Information Criteria was calculated in R using the ‘BIC’ function in the 

package ‘nlme’. This parameter represents the "a posteriori" probability of the model 

to be true, being maximized when the magnitude of the parameter is minimized.  

 

Additional File 21.pdf (Adobe Acrobat file) 

Lack of linear correlation between expression levels and gene responsiveness 



 

Box plot of the signal of a gene across the whole NASC arrays dataset (X-axis) 

versus gene responsiveness (the number of comparisons in which it is significantly 

regulated, Y-axis). A simple linear regression model cannot explain the variability in 

the data (R
2
 = 0.04). 
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