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114–D, Santiago, Chile (F.F.A., J.M.C., R.A.G.)

Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and
interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable
biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant
software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology
perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes,
proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization
techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts.
Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray
experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which
internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant
with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs
that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana)
genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is
freely available at www.virtualplant.org.

Today, experimental biology laboratories usually
investigate the molecular mechanisms underlying a
physiological or developmental response by identify-
ing the genes involved using a genomic platform, such
as microarray (or, soon, deep sequencing) technology.
Such a platformmight identify genes regulated during
a physiological or developmental response. Once the
relevant gene sets are identified, biologists next analyze
their functional relationships (e.g. whether they belong
to the same metabolic pathway) and analyze their

properties in the context of known biological pathways
(DeRisi et al., 1997). Performing these tasks can be
cumbersome because the biologist has to use several
different tools to accomplish them. In addition, the
difficulty is often increased because the different tools
donot readandwrite the samedata formats, forcing the
biologist to obtain data conversion software.

Aside from the challenge of integrating the vast
amount of knowledge accumulated in the literature
about the relevant genes, the genomic data available in
the public domain have been obtained with a large
number of experimental approaches and an even
larger number of laboratories. Moreover, the informa-
tion is stored in numerous databases, and it is encoded
in diverse formats and database schemas. Bioinfor-
matics faces a major challenge integrating this large-
scale, heterogeneous information into architectures
that support biological research. Different approaches
that have been employed include hypertext navigation
on theWorldWideWeb, data warehousing, and client-
side integration (for example, see Ritter, 1994; Karp,
1996; Siepel et al., 2001; Philippi, 2004; Wilkinson et al.,
2005). Once data from distinct database sources are
coherently integrated, tools and computer models can
be used to enable one to visualize and analyze
this biological data from a systems perspective (Ideker
et al., 2001). Several environments have been devel-
oped to support data integration and modeling
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(Kahlem and Birney, 2007). Some software allows
detailed mathematical representation of cellular pro-
cesses (e.g. Gepasi [Mendes, 1997] and Virtual Cell
[Loew and Schaff, 2001]), while other software permits
qualitative representations of cellular components and
their interactions (e.g. Cytoscape [Shannon et al.,
2003], Osprey [Breitkreutz et al., 2003], and N-Browse
[Kao and Gunsalus, 2008]). Generally, quantitative
models build detailed mathematical abstractions of
specific cellular process. Quantitativemodels are pow-
erful because theydescribe a system indetail (Endy and
Brent, 2001), but they require a detailed understanding
of the system. Unfortunately, this information is avail-
able for only a fewbiological processes. In fact, there are
still many gaps in our qualitative understanding of
biological systems, even for model organisms. For
example, most of the genes in Arabidopsis (Arabidopsis
thaliana) have not yet been experimentally character-
ized. Thus, while quantitative computer models can
provide powerful, detailed representations of biologi-
cal systems, not enough is known about Arabidopsis
and other plants to construct such models of them or
theirmajor components. Therefore,wehave focused on
building software that facilitates analysis of the systems
and statistical and interaction relationships between
their genes and gene products.
Today’s most widely available measure of gene

function is the level of gene expression provided by
a microarray analysis. Many approaches and tools
support analysis of expression data. A now classic
approach, for example, is to identify genes that are
coregulated in their expression patterns across se-
lected experimental conditions (e.g. Eisen et al., 1998).
An extensive review of the different software tools
that are available for studying gene coexpression is
available (Usadel et al., 2009). To identify genes that
are differentially expressed between two experimental
conditions, statistical methods such as Rank Products
can be used (Breitling et al., 2004; Hong et al., 2006).
Several tools are available as packages in BioConduc-
tor, a project largely composed of tools written in the
statistical language R (Gentleman et al., 2004). To
determine the biological significance of differentially
or coexpressed genes, biologists often evaluate the
frequency of occurrence of functional attributes pro-
vided by structured functional annotations, such as
Gene Ontology (GO; Ashburner et al., 2000). Several
software packages to automate this type of analysis
now exist (e.g. Onto-Express [Khatri et al., 2002],
GoMiner [Zeeberg et al., 2003], GOSurfer [Zhong
et al., 2004], and FatiGO [Al-Shahrour et al., 2004]).
While advanced data analysis tools for exploiting
genomic data are rapidly emerging (for review, see
Brady and Provart, 2009), the narrow specialization of
most current software tools forces geneticists to em-
ploy many tools to analyze the data in a single bio-
logical study. This cumbersome and inefficient process
greatly hinders biologists following a systems ap-
proach of iterative in silico exploration and experi-
mentation.

VirtualPlant addresses these problems by integrat-
ing selected genomic data and analysis tools into a
single Web-accessible software platform. The goal of
our work is to help biologists discover new insights
by synthesizing multiple data sources. VirtualPlant
provides access to a database storing selected infor-
mation about Arabidopsis and rice (Oryza sativa) ex-
periments, genes, gene products, and their properties.
VirtualPlant’s software architecture and data model
have been designed and created in a generic, species-
independent manner to ease the addition of new
organisms and tools in the future. The VirtualPlant
database also includes a high-level representation of
plant cellular components and interactions that allow
users to create molecular networks “on the fly.” These
molecular networks provide a framework for analyz-
ing experimental measurements. VirtualPlant also in-
cludes novel data visualization and data analysis
techniques that allow seamless information explora-
tion across many data sets with the help of a shopping
cart in which gene sets from experiments and/or
analyses can be stored and then used as inputs to
other tools to enable iterative analysis. For concrete-
ness, we present an example of how we have used
VirtualPlant to identify gene networks and putative
regulatory hubs that control seed development. We
have previously demonstrated the use of VirtualPlant
and specific tools embodied in the VirtualPlant system
to generate hypotheses that were validated experi-
mentally (Wang et al., 2004; Gutiérrez et al., 2007b,
2008; Gifford et al., 2008; Thum et al., 2008).

RESULTS

The VirtualPlant Data and Tools

VirtualPlant was constructed on top of a small data
warehouse that supports the data analysis process.
This warehouse includes descriptions of molecular
entities (e.g. gene annotations and functional classifi-
cation), molecular interactions (metabolic associations,
regulatory interactions, and other interaction data
from public databases), and publicly available micro-
array data (including more than 1,800 gene chip hy-
bridizations from the ATH1 Affymetrix platform
obtained from the European Arabidopsis Stock Center
[NASC] using the Affywatch subscription service). A
description of the currently supported data types and
corresponding sources can be found in Table I. Virtual-
Plant contains a software module that automatically
refreshes this database on a regular basis. Virtual-
Plant’s interface was designed to be analogous to the
familiar E-commerce paradigm, which has customers
(aka biologists) and inventory (aka data; Fig. 1). Users
can interact with data in VirtualPlant in three main
ways: (1) browse the database,(2) query the database
content, and (3) upload their own data. The Virtual-
Plant Web site is divided into four separate windows:
(1) the navigation window located on the top, (2) the
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cart window located on the left, (3) the data browser
window located on the lower left, and (4) the analysis
window located in the middle (Fig. 2). The naviga-
tion window provides links to the different features of
VirtualPlant. The data browser window provides ac-
cess to some of the different annotations and func-
tional categories that are loaded into the VirtualPlant
database. The analysis window is where most of the
activity occurs. Figure 2 shows the “analysis” view,
which is the result from clicking on “analyze” in the
navigation window. The pull-down menu shows the
different types of functions and tools that are available
for that species (Arabidopsis) and data type.

As discussed above, a key challenge to analyzing
genomic data is the complex analysis workflow re-
quired by currently available software. VirtualPlant
solves this problem by integrating multiple tools into a
single platform that standardizes the representation of
their inputs and outputs so that the output of almost
any analysis can be stored in VirtualPlant and later
input to any VirtualPlant analysis tool. These interme-
diate results are stored indefinitely as sets of genes (or
experiments) in the gene cart (Fig. 2). This iterative
model enables biologists to make arbitrarily complex,
multistep analyses of their genomic data. Further-
more, they can suspend or resume any analysis at any
time, returning to VirtualPlant to continue working
with previously created intermediate results. In this
sense, VirtualPlant is not a single-service site where
data are uploaded from a user (biologist), analyzed
with a tool, and then downloaded back to the user.
Instead, users can iteratively analyze their data by
using the output of one data analysis/visualization
tool as the input of another tool using the cart as
an intermediate. This unique feature of VirtualPlant

facilitates a fundamental methodology of systems
biology’s iterative cycles of data analysis and experi-
mentation (Ideker et al., 2001; Gutiérrez et al., 2005).
Three working examples described below illustrate
how VirtualPlant can be used to perform iterative data
analyses that build and refine testable biological hy-
potheses.

Using VirtualPlant to Drive Iterative Cycles of Systems
Biology Research

The purpose of the following three case studies is to
describe some of the tools available in VirtualPlant and
to illustrate the utility of the software in the integration
of genomic data to develop testable hypotheses. The
first two case studies illustrate some of the basic
functions of VirtualPlant. The third case study pro-
vides an advanced application of the software. Each
case study provides concrete working examples that
can help new users learn how to use the software.
Links to step-by-step video tutorials for the three case
studies are provided on the Web site.

Case Study 1: Analysis at the Gene Level

This first case study illustrates an analysis of one
gene with VirtualPlant. Suppose a biologist poses the
following question: What are the biological processes
associated with the genes coexpressed with NIA1? We
start answering this question by searching the data-
base for NIA1. A simple way to query the VirtualPlant
database is to use the query form, which can be
accessed using the query link on the navigation win-
dow (Fig. 2). To perform a query, select type “genes,”
enter NIA1 in the “keywords” field, and click the

Table I. Data available in the VirtualPlant database

Data Source Statistics Reference

Gene annotation TAIR 33,264 genes Rhee et al. (2003)
Functional categories GeneOntology (TAIR) 102,879 associations Ashburner et al. (2000)

MIPSFuncat (MIPS) 46,514 associations Mewes et al. (2004)
Microarray data Data files (NASC) 499 experiments containing

3,829 hybridizations
Craigon et al. (2004);
Redman et al. (2004)

Probe to gene associations
(AFFYMETRIX)

22,810 probes mapped to
23,334 genes

Rhee et al. (2003)

Biochemical pathways KEGG 11,197 Mueller et al. (2003)
ARACYC 17,498 Kanehisa et al. (2004)

Regulatory interactions AGRIS 343 interactions Davuluri et al. (2003)
Predicted regulatory

interactions
21,698,658 transcription factors to
target predictions

Gutiérrez et al. (2008)

INTERACTOME 39,317 interactions Geisler-Lee et al. (2007)
AtPID 24,418 Cui et al. (2008)
BIND 949 Bader et al. (2002)
MADS BOX 263 de Folter et al. (2005)
Calmodulin 755 calmodulins Popescu et al. (2007)

Literature-based
interactions

GENEWAYS 107 interactions Rzhetsky et al. (2004)

MicroRNA:mRNA
interactions

Collated by Dr. Pam Green’s
laboratory (mirBASE and ASRP)

582 interactions Gustafson et al. (2005);
Lu et al. (2005);
Griffiths-Jones et al. (2006)
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“submit query” button. The results are displayed in
a table where the user can select the result(s) of inter-
est and add it to their cart. Clicking on the gene de-
scription “NIA1,NIA1 (NITRATE REDUCTASE 1),”
displays the gene details page, which contains infor-
mation about the gene, such as its full annotation, gene
models, Affymetrix probe ID, and functional annota-
tion terms.
To learn more about the expression of this gene,

simply click on the Affymetrix probe ID name
(259681_at) that appears in the NIA1 gene details
page. Clicking on 259681_at will open the probe details
page. In addition to the probe attributes, this page
contains a histogram of the number of probes whose
expression correlates with NIA1 and also displays the
correlation values (Fig. 3). These correlation values
were determined previously using publicly available
microarray experiments from the ATH1 Affymetrix
platform obtained from NASC (www.arabidopsis.
info). The experiments were first normalized using

the RMA method, and all pairwise probe correlations
were calculated using Spearman rank correlation.
Correlation values between genes can vary based on
the experimental data set being examined and the
statistics used (Usadel et al., 2009). The purpose of the
graph is to show some of the genes that are correlated
across a collection of experiments with the gene of
interest and then use some of the other tools in the
VirtualPlant system to further investigate and explore
the coexpressed genes. To select the probes that are
correlated to the query probe, one can simply click on
the bars of the histogram. The probes that are corre-
lated to the query probe (259681_at in this example)
will be displayed in the table under the graph. To
select genes that are positively correlated to NIA1 at a
cutoff of at least 0.6 and ,0.7, one can click on the bar
labeled “0.6 to 0.7.” This analysis shows that there are
20 probes correlated to 259681_at that map to 23 genes
because three of the probes are ambiguous (map to
two genes). In order to further analyze the 23 genes

Figure 1. Conceptual diagram of the VirtualPlant software system. VirtualPlant follows the e-commerce site logic. In
e-commerce sites, users browse and query the database and add products of interest to their shopping cart. Users then check
out and purchase the items in their cart. Similarly, VirtualPlant allows biologists to browse lists of genes or microarray
experiments with desirable properties. Having found interesting data, they can load the data into the gene cart and “check out” to
analyze the selected genes. Biologists can then analyze or visualize the data in the cart to generate biological hypothesis. Most
tools in VirtualPlant can store their output in the Cart for a new round of analysis. This key feature allows for iterative filtering and
refinement of large data sets.

VirtualPlant
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whose expression correlates with NIA1, one can either
export the list of genes to the cart using the “save
selection to cart” button or visualize the functional
annotation of the genes using the “pie” function (see
below). To select all 23 genes, select the first gene,
scroll down using the scroll bar on the table, depress
the shift key, and select the last gene. Clicking on the
“save selection to cart” button creates a new entry
named “Corr:259681_at” in the cart. This new list of
genes can now be used as input to all other tools in
VirtualPlant, such as BioMaps (discussed in case study
2) to find overrepresented GO or Munich Information
Center for Protein Sequences (MIPS) terms or gene
networks (discussed in case study 3) where one can
identify any known or predicted interactions between
the 23 genes.

The pie function identifies the biological processes
associated with the genes that are correlated to NIA1
and displays the results in a pie chart. Click on “pie” to
open a new window with a pie chart of GO terms
(Ashburner et al., 2000) associated with the genes in
the selected list (Fig. 3). The pie chart displays the

number of genes in each GO term. On the top left there
is a pull-down menu where one of the three ontologies
(biological process, cellular component, or molecular
function) can be selected. By default, all GO terms that
are directly associated with the genes are shown,
which include GO terms from different levels of the
GO hierarchy. Selecting the “level” checkbox allows
the user to select a certain depth of the GO hierarchy.
At level 1 of biological process, the three most abun-
dant terms are “cellular process,” “metabolic process,”
and “response to stimulus.” When you move the slide
to level 2, the terms are more specific and more
informative.

This simple exercise indicated that expression of the
NIA1 gene correlates with the expression of genes
involved in cellular metabolic process, primary meta-
bolic process, biosynthetic process, response to stress,
and response to abiotic stimulus (Fig. 3). This result is
consistent with our understanding of nitrate reduction
and the coordination between this and other metabolic
pathways in plants (Sitt et al., 2002). This answer to the
original question “What are the biological processes

Figure 2. The VirtualPlant Web site. There are four main areas in the VirtualPlant Web site: (1) the navigation window (top), (2)
the cart window (left), (3) the database browser window (bottom left), and (4) the analysis window (center). The navigation
window contains links to the different contents in VirtualPlant. The cart window displays the contents of the cart, which are lists
of genes and experiments that have been created and saved by the user. The database browser window allows the user to navigate
through different types of data stored in the database. Clicking on “analyze” in the navigation window loads a detailed view of
the cart in the analysis windowwhere the user can select the gene or experiment and the different visualization and analysis tools
from the pull-down menu.
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Figure 3. Genes correlated to NIA1
and their gene ontology annotations.
A, Histogram representing the number
of probes correlated with the NIA1
Affymetrix probe (259681_at). Orange
bars represent the number of probes in
the different correlation cutoff inter-
vals. These can be selected by the
“range to graph” sliding tool on the
right of the graph. Clicking on the bars
will display probes from the selected
interval in the table below. B, Pie-chart
of the gene ontology terms associated
to 23 genes selected in A. Each term
has a different color in the pie chart.
The legend to the right of the pie chart
indicates the name of the GO term.
The pie chart is generated by selecting
the genes from the table and clicking
on the “pie” button at the bottom.

VirtualPlant
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associated with the genes coexpressed with NIA1?”
was obtained via VirtualPlant’s user-friendly Web
interface in a few minutes. The next case study will
show how we can use VirtualPlant to obtain statisti-
cally significant GO terms associated with a list of
genes.

Case Study 2: Analysis at the Gene List Level

With the advent of genomic technologies (e.g. micro-
array technology), many researchers today study not
one gene but one or more lists of many genes. These
gene lists can be generated in different ways: (1) genes
correlated to a gene of interest (previous example), (2)
genes in a gene family, (3) genes in a metabolic
pathway, or (4) genes that are differentially expressed
in several independent microarray experiments. To
illustrate how VirtualPlant is used to analyze lists of
genes, this case study mines published microarray
results of nitrate-regulated genes. Wang et al. (2004)
compared global gene expression in response to ni-
trate treatments in a nitrate reductase (NR)-null mu-
tant and wild-type plants. Genes that are similarly
regulated by nitrate in both the wild-type and the NR-
null mutant are designated “nitrate-regulated,” as the
lack of nitrate reductase prevents nitrate reduction and
assimilation, thus blocking the production of any
downstream metabolic signals. The biological ques-
tion in this second case study is: “What processes are
regulated by nitrate and not a downstream nitrogen
signal?” To answer this question, the first step is to
identify genes that are regulated similarly by nitrate in
both the NR-null mutant (or double mutant) and wild-
type plants. To facilitate this demonstration, Virtual-
Plant provides these lists of genes in the “upload data”
page (accessible by clicking on the “upload data” link
in the navigation window). The first two lists under
“sample data” correspond to genes that are induced in
the wild type (439 genes) and induced in the mutant
(393 genes). Clicking on the titles of the sample gene
lists will add them to the cart. The two sample gene
lists will appear in the cart in the top left corner. To find
genes that are induced in both mutant and wild-type
plants, one uses the “intersect” tool. The intersect tool
is available by clicking the “analyze” link in the
navigation window (Fig. 2). Once the analysis window
has loaded, select the gene sets by clicking the check-
boxes in front of the WTRoots and DMRoots lists,
choose the “intersect” function from the “analysis”
pull-down menu (Fig. 2), and click on the “analyze”
button. A new set, which contains genes contained in
the two gene lists (wild type and mutant), is created
and added to the Cart with the name “Intersec-
tion: Wang_etal_2004_I_DMroots/Wang_etal_2004_I_
WTroots.” In this example, the newly created gene set
contains 283 genes that are induced in both the NR-
null mutant and in wild-type plants. The three set
operation tools (union, intersect, and symmetric dif-
ference) input two or more gene lists and produce a
gene set output. A highly interactive visual analysis of

set operations on two or more lists of genes can also be
carried out using Sungear, a tool available from the
“analysis” pull-down menu (Fig. 2). For a detailed
description of Sungear, please refer to the previous
publication by Poultney et al. (2007). An example of
the use of Sungear to gain insight into the genomic
nitrate response was also published (Gutiérrez et al.,
2007a).

To answer the next question, “What processes are
regulated by nitrate and not a downstream nitrogen
signal?” one needs to identify the biological processes
that are significantly overrepresented in the list of 283
genes. One way to answer this question in VirtualPlant
is to use the BioMaps tool to determine which GO
terms or MIPS functional categories (Mewes et al.,
2004) are statistically overrepresented in a list of genes
as compared to a background population (e.g. the
entire genome). To do this, select the check box to the
left of the “Intersection: Wang_etal_2004_I_DMroots/
Wang_etal_2004_I_WTroots” list, elect “BioMaps” in
the “analysis” pull-down menu (Fig. 2), and click
“analyze.” Once executed, BioMaps displays a page
where the user can select the annotation (GO terms or
MIPS), the background population, the statistical
method (binomial distribution, hypergeometric distri-
bution, and Fisher’s exact test), and the P value cutoff
to use for the analysis. The P values shown in the
output of BioMaps are already adjusted for multiple
hypotheses testing using false discovery rate correc-
tion. For this case study, use the default settings: GO
assignments from The Arabidopsis Information Re-
source (TAIR) and hypergeometric distribution test
with a P value cutoff of 0.01. Since the gene lists used
in this case study were generated using data from
ATH1 microarray experiments, we will select the
option to use ATH1 genes as the background. The
results are provided as “table view,” “network view,”
which is a color-coded graph, and a link to “download
to Excel,” which is a tab-delimited file that can
be opened in Excel, Word, or any other software
that can read text files. The final link “unprocessed”
downloads a file with comments from the BioMaps
analysis. The network view graph is generated by an
open source software package called GO::TermFinder
(Boyle et al., 2004) and provides an intuitive and visual
way to analyze the results. This graph shows the
relevant functional terms and their parents as nodes,
with annotated genes attached in gray boxes to the
most specific term. Clicking on the node name opens
up its detail page. The more general terms in the
annotation are represented by nodes drawn at the top
of the image (e.g. cellular process), with increasing
specificity toward the bottom of the image (e.g. cellular
carbohydrate metabolic process). The color of the
nodes indicates the P value of overrepresentation as
indicated by the graph’s legend (Fig. 4). To simplify
the analysis of complex results, this graphical repre-
sentation of BioMaps will show a maximum of 10
overrepresented functional terms. However, the table
output of BioMaps will always contain all significantly
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overrepresented terms found by the analysis. The table
also provides details regarding the genes in the query
list that belong to the term as well as the statistics. Any
set of genes listed in the table can be added to the cart.
A simple visual inspection of the table view resulting
from the BioMaps analysis allows the user to identify
the most prominent biological processes in the gene
list analyzed (Supplemental Table S1). In this example,
cellular carbohydrate metabolic process, alcohol met-

abolic process, ion transport, and response to abiotic
stimulus are some of the overrepresented biological
processes among the 283 genes that are regulated by
nitrate. This confirms previous results (Crawford,
1995; Sitt et al., 2002; Gutiérrez et al., 2007b) showing
that carbohydrate metabolism is a metabolic process
that is coordinately regulated with nitrate availability.
VirtualPlant’s support for gene lists described in this
section provides a simple yet powerful way to inte-

Figure 4. BioMaps results of genes that are induced by nitrate in both the wild type and NR-null mutant. BioMaps graphical
output is a directed acyclic graph that shows the functional terms that are overrepresented in the gene list analyzed. The gray
nodes contain the genes annotated to a functional term. The other colored nodes of the graph correspond to functional terms. The
colors indicate the statistical significance of the overrepresentation as indicated in the legend included in the figure. For example,
orange nodes correspond to functional terms overrepresented with P # 1e-10.

VirtualPlant
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grate and analyze published experiments, annotation,
pathways, and other data using a list of genes as the
common currency. With a few steps, VirtualPlant can
help biologists build testable hypotheses from the
comparative analysis of genomic data presented in a
biological context as shown in a series of recent pub-
lications (Gutiérrez et al., 2007b, 2008; Gifford et al.,
2008; Thum et al., 2008).

Case Study 3: Analyzing Gene Networks

The last case study demonstrates a more advanced
use of VirtualPlant. Nitrogen is essential for synthe-
sizing seed storage proteins, which is crucial for
proper seed development. The goal of this case study
is to determine which nitrogen metabolic genes are
controlled at the level of gene expression during seed
development and to identify transcription factors that
may be key hubs that regulate these genes during seed
development. In short, this study asks “What are the
regulatory networks responsible for coordinating the
expression of genes involved in nitrogen metabolism
during seed development?” This case study will dem-
onstrate how to (1) load a publicly available micro-
array data set into a user’s cart, (2) identify genes that
are regulated during seed development by determin-
ing which genes are differentially expressed, and (3)
examine molecular interactions between genes in-
volved in nitrogen metabolism and genes regulated
during seed development.

At this point, one must create a VirtualPlant user
account, thereby serving two main purposes: (1) allow
the user to save gene lists and experiments in the cart
and (2) register the user’s email so they can be notified
when a long-running analysis is completed. For this
example, we will start by analyzing microarray data.
The microarray experiments can be loaded to the cart
either by browsing for the experiment using the data
browser window or by uploading the experimental
data directly. VirtualPlant accepts two formats for data
upload: (1) original ATH1 CEL files, which can then be
normalized using either gcRMA or MAS5, and (2)
matrices of expression values. The second format
allows users to use a different normalization method
and then upload the normalized data to VirtualPlant.
It also allows users to upload experiments generated
with other microarray platforms as well as alternative
experimental approaches, such as next-generation se-
quencing technologies.

The experiment selected for this case study was a
seeds and siliques developmental time series gener-
ated by the AtGenExpress project (Schmid et al., 2005).
To select this experiment, click on “microarray exper-
iment” in the data browser window at the lower left of
the screen. Then, in the main window, click on
“AtGenExpress Project,” “developmental stage,” “de-
velopmental series,” and then “Detlef Weigel, Jan
Lohmann, Markus Schmid AtGenExpress: Develop-
mental series (siliques and seeds) (154)” (Schmid et al.,
2005). The user can add this experiment to the cart

using the “create experiment” button. To facilitate the
demonstration of the VirtualPlant software for first-
time users, we also provide a link on the upload data
page to directly add this experiment to the cart. To
analyze the experiment, click on “analyze” in the
navigation window. By default, the analysis view
displays the gene sets section of the cart. To view the
experiments section, click on the “experiments” link.
Now the main window displays all the experiments in
the cart. Select the checkbox near the experiment,
select “find differentially expressed genes” from the
pull-down menu, and click “analyze.” A form will
appear that allows users to select the “base” and
“treatment” microarray hybridizations. Placing the
mouse over a slide’s name provides more detailed
information. In this example, the last five stages of the
developmental series are derived from isolated seeds
containing no silique tissue, so we will analyze only
these last five stages. To identify differentially ex-
pressed genes during seed development, select a seed
development stage as base and the subsequent stage as
treatment. For the first comparison, select all three
ATGE_79 as base and all three ATGE_81 as treatment.
VirtualPlant provides the user with several different
statistical functions, but for this case study, select
RankProduct (Breitling et al., 2004) with a P value
cutoff of 0.01. The calculation to determine differen-
tially expressed genes is performed offline. An e-mail
is sent to the user when the calculations are completed.
It is not necessary to wait for this analysis to finish in
order to do something else in VirtualPlant. For this
case study, we also compared ATGE_81 versus
ATGE_82, ATGE_82 versus ATGE_83, and ATGE_83
versus ATGE_84.

After completion of the statistical analysis, the user
receives an e-mail notifying them that the job has been
completed and indicating whether the analysis re-
sulted in any differentially expressed genes. The list(s)
of differentially expressed genes will appear in the cart
with a name formed by concatenating the name of the
experiment, “diff exp genes,” the statistical method
used, and whether the genes are induced (ind) or
decreased (dec). Collectively, all four comparisons
above will create eight lists (each comparison gener-
ating induced and repressed lists). A union of the eight
lists will result in 1,367 genes that are differentially
expressed in at least one of the four stages of seed
development compared to the previous stage. To cre-
ate a union of the lists, go to the “analysis view,” select
all the lists of differentially expressed genes during
seed development you identified in the previous steps,
and then select the “union” function from the analysis
pull-down menu.

The next step in this case study is to create a
molecular network for the genes that are regulated
during seed development. Currently, VirtualPlant of-
fers three different network functions: (1) super node
networks, (2) gene networks, and (3) networks statis-
tics. The super node networks analysis provides a
view of the biological processes that are regulated
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during seed development and how they interact with
each other. The super node networks tool groups
individual genes into a “super node” based on shared
functional properties, such as GO terms, KEGG path-
way, gene families, and even similar annotations.
Edges are drawn between two super nodes when at
least one gene or gene product in each super node has
a molecular interaction. To perform super node net-
works analysis on the lists of differentially expressed
genes during seed development, click on “analyze,”
select the check boxes next to the eight lists generated
in the previous section (or the union of these lists),
select the “super node networks” tool from the anal-
ysis pull-down menu, and click the “analyze” button.
Once executed, the “super node networks” tool will

present the user with two forms. The first form enables
selection of the criteria for grouping genes into a super
node (Fig. 5A). The default grouping method is to use
the first few words of the gene annotations. For the
first option, use the pull-down menu to select “share
first TWO words,” which will group together genes
that share the first two words. The second option is to
select the functional annotation you want to use. From
the pull-down menu, select “KEGG pathway and gene
families.” Functional annotations are often categorized
in a hierarchical manner, where the functional terms
and pathways are themselves grouped into a higher
more generic category. For the third option, select
“direct associations” from the pull-down menu. Met-
abolic genes are often associated with each other via

Figure 5. Super node and gene net-
work forms. Super node analysis groups
the genes based on the biological
processes, functional terms, and anno-
tations associated with the genes. A,
The super node network form allows
the user to choose from a selection of
different functional term annotations
and the depth of the annotation. In this
case, the grouping is based on “KEGG
pathway and gene families,” and only
the “direct associated” annotations
are used. In the super node analysis,
interactions between the biological
processes are determined by the multi-
network data. Therefore, super node
analysis will prompt the user with two
forms: the super node network form
and the multinetwork form. B, The
gene network form allows the user to
select from the different molecular in-
teractions that are present in the multi-
network (see Table I for the list of
resources available). In addition to
the super node analysis, this form is
also used for the network statistics tool.
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metabolites. For this case study, we will not represent
the metabolites in the network. Finally, click on the
“submit” button. The next form allows the user to
select the types of molecular interaction data to view in
the network. See the “Materials and Methods” section
for details about the different types of edges connect-
ing two genes. Using the default mode will select all
potential edges connecting two genes. For this case
study, select enzymatic reactions, literature-based in-
teractions, posttranscriptional regulation, protein-
protein interactions, and transcriptional regulation
(Fig. 5B). For enzymatic reactions, only select the
“primary” reactions, which correspond to the edges
drawn on the KEGG pathway maps. The regulated
edges are predicted interactions based on the presence
of known transcription factor cis-acting binding sites
located in the 3-kb upstream region of annotated
transcripts. Subtype “one binding site” represents
presence of at least one binding site in the upstream
region, and “over-represented binding site” represents
overrepresentation of the binding site (two SDs) com-
pared to the expected number based in all upstream
regions in the genome. Check the “regulated edges”
box and choose “one binding site” as the subtype. To
improve the regulatory interaction predictions, filter
the transcription factor:target gene predictions to in-
clude only the transcription factor and target pair
whose expression values are correlated in the micro-
array experiment (Gutiérrez et al., 2008; Vandepoele
et al., 2009). To filter “regulated edges” by correlation,
select the checkbox in the “correlation data” column
in the “regulated edges” row. To select the correct

data set, select “Detlef Weigel, Jan Lohmann, Markus
Schmid AtGenExpress: Developmental series (siliques
and seeds)” in the “experiment” field. The statistics for
the calculation of correlations selected in this example
are “Pearson” and with cutoff values of less than 20.9
and higher than 0.9. The last parameter that we need to
define to load the network is the number of “hops”
away from the original list of genes used for the
analysis. With 0 hops the network shows only the
genes in the original list and the interactions between
them. With 1 hop, the network will also show genes
that were not in the original list but that are associated
with genes in the original list. One hop is a good
option when the gene list is small or has very few
interactions. For this example, we will select 0 hops
and then click on the “submit” button to generate the
network. Visualization and manipulation of the net-
work produced by either “super node analysis” or
“gene network” analysis is implemented by the Cyto-
scape software (Shannon et al., 2003), which is
launched automatically using Java Webstart. Features
in Cytoscape allow users to set visualization prefer-
ences, such as the network layout (Figs. 6 and 7 use the
organic layout), changing node attributes such as size
(size of super nodes in Fig. 6 are proportional to the
number of genes in the super node), and to select
nodes based on attributes such as size. The first time
Cytoscape is launched from VirtualPlant it will need to
download the necessary files onto the user’s computer.
The super node networks analysis for the 1,367 seed
regulated genes reveals several major transcription
factor families that are highly connected in the seed

Figure 6. Super node network analysis of genes differentially expressed during seed development. The super node network graph
allows the user to visualize relationships between biological processes. The nodes in the graph correspond to the super nodes,
each grouping genes with common features, and edges connecting the nodes represent the different interactions between the
genes in the super nodes (see text for details). Edge colors represent different interactions: blue edges, protein-protein
interactions; black arrows, metabolic reactions; red arrows, predictions for transcriptional induction; and green arrows,
predictions for transcriptional repression. The network shows “nitrogen metabolism” and its first neighbors in the super node
seed-regulated network. The neighbors are mostly transcription factor families and two metabolic processes. The number near
each name identifies the number of genes in the super node.
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development network (based on correlation and over-
representation of cis-acting elements in the promoter
region), including MADS box, bHLH, TGA3-like,
NAC, and bZIP. Interestingly, the network analysis
also identifies a super node of “unknown proteins”
composed of 147 genes connected by putative tran-
scription factor hubs. The next step is to identify the
“nitrogen metabolism” node and all the other super
nodes that are connected to it. From Cytoscape’s menu
bar, perform the following selection events: “select,”
“nodes,” “by name,” and type in the text field “nitro-
gen metabolism.” This will highlight and select the
node. From the Cytoscape’s menu bar, select “select,”
“nodes,” and “first neighbors of selected nodes.” This
will select the nitrogen metabolism node and all the
nodes associated with it. Most of the neighbors are
transcription factor families, and two are other meta-
bolic process (“alanine and aspartate metabolism” and

“urea cycle and metabolism of amino groups”; Fig. 6).
The VirtualPlant plugin for Cytoscape allows users to
send genes in the selected nodes back to their cart.
While the nodes are still selected, from Cytoscape’s
menu bar select “plugins,” “VirtualPlant,” and then
“login to VirtualPlant.” Enter your VirtualPlant pass-
word and click the “login” button. Then again from
the menu bar, select “plugins,” “VirtualPlant,” and
“send selected nodes to VirtualPlant.” A window will
appear where the user must select the species they are
working with. Select “Arabidopsis” and then “OK.”
Give the new list a name. There are 58 genes that are
present in the super node nitrogen metabolism and the
super nodes it interacts with, including transcription
factors.

The Super node network analysis has identified a
network of nitrogen metabolic genes and their neigh-
bors that are regulated during seed development.

Figure 7. Gene network analysis of genes differentially expressed during seed development. The gene network graph shows
interactions between genes, gene products, and/or metabolites. Orange circles represent metabolites, green triangles represent
transcription factors, purple diamonds represent microRNAs, and blue squares represent metabolic genes. Edge colors represent
different interactions: blue edges, protein-protein interactions; black arrows, metabolic reactions; red arrows, predictions for
transcriptional induction; and green arrows, predictions for transcriptional repression. Different miR164 genes are shown
targeting two transcription factors that are indirectly connected to the metabolic genes. Out of the seven nitrogen metabolic
genes present in this network, only ASN1 and ASN2 have predicted regulators based on correlated transcription analysis and
predicted cis-element binding sites.
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Nodes with the highest number of connections (hubs)
in a biological network often play important roles in
the network’s operation (Barabasi and Oltvai, 2004). To
obtain a quantitative measure of the number of con-
nections, the user can run the “network statistics” tool.
In the “analysis” view, select the checkbox near the list
of 58 genes and select the “network statistics” function
from the analysis pull-down menu. This tool displays
a table of the most highly connected nodes in the
network. The analysis revealed that several AP2-like
transcription factors are among the most highly con-
nected transcription factors in the nitrogen metabolic
seed regulatory network, which suggests that they
play an important role in regulating genes involved in
nitrogen metabolism during the stages of seed devel-
opment analyzed (Table II). To obtain a detailed view
of all the molecular interactions of the 58 genes from
the super node network analysis, e.g. individual tran-
scription factors and their targets, the user can run the
“gene networks” tool. From the analysis page, select
the checkbox near the list of 58 genes and then “gene
networks” from the analysis pull-down menu. Select-
ing the same options as before (primary enzymatic
reactions, all the literature-based interactions, post-
transcriptional regulation, protein-protein interac-
tions, and transcriptional regulation) will produce
the result shown in Figure 7. Five genes involved in
nitrogen metabolism (NIR1, NIA1, NIA2, ASN1, and
ASN2), three different miRNA164 genes, and 39 tran-
scription factors from many different transcription
factor families are present in the network. In this
network, only two nitrogen metabolic genes are tar-
geted by the transcription factors; ASN1, which is

induced during seed development (Table III), and
ASN2, which is repressed during seed development.
The expression of ASN1 is positively correlated to the
expression of one transcription factor and negatively
correlated to the expression of two other transcription
factors. In contrast, the expression of ASN2 is nega-
tively correlated to the expression of all the transcrip-
tion factors in the network.

In our in silico network analysis, ASN1 is one of the
nitrogen metabolic genes that is regulated during seed
development. Previous studies have shown that when
ASN1 is overexpressed using a 35S::ASN1 line, the
seed contains a higher level of free Asn (Lam et al.,
2003). Along with higher levels of Asn, the authors
also observed higher levels of total protein content in
seeds. The results from our third case study also
predict that the expression of ASN1 is induced by a
NAC-like transcription factor NAP (At1g69490), which
itself is known to be required for leaf senescence (Guo

Table II. Several AP2 transcription factors are highly connected in the seed development gene network

This table ranks genes by the degree (number of connections) in the seed development gene network
(see text for details).

Gene Connections Annotation

At5g65010 23 ASN2,ASN2 (ASPARAGINE SYNTHETASE2); Asn
synthase (glutamine-hydrolyzing)

At2g36270 22 ABI5,ABI5 (ABA INSENSITIVE5); DNA binding/
transcription factor/transcriptional activator

At5g18450 21 AP2 domain-containing transcription factor, putative
At5g13330 20 RAP2.6 L,RAP2.6 L (related to AP2 6L); DNA binding/

transcription factor
At1g34180 19 ANAC016,ANAC016 (Arabidopsis NAC domain

containing protein 16), ANAC016 (Arabidopsis NAC
domain containing protein 16); transcription factor

At4g36900 18 RAP2.10,RAP2.10 (related to AP2 10); DNA binding/
transcription factor

At3g62090 17 PIL2,PIL2 (PHYTOCHROME INTERACTING FACTOR
3-LIKE2),PIL2 (PHYTOCHROME INTERACTING
FACTOR 3-LIKE2); transcription factor

At1g01720 17 ATAF1,ATAF1 (Arabidopsis NAC domain containing
protein 2); transcription factor

At1g43160 17 RAP2.6,RAP2.6 (related to AP2 6); DNA binding/
transcription factor

At1g77450 17 ANAC032,ANAC032 (Arabidopsis NAC domain
containing protein 32); transcription factor

Table III. Five nitrogen metabolic genes that are regulated during
seed development

This table displays the five nitrogen metabolic genes and the stages
of development in which they are regulated and how. IND, Induced;
DEC, repressed.

Genes
ATGE

79–81

ATGE

81–82

ATGE

82–83

ATGE

83–84

ASN1 IND
ASN2 DEC
NIA1 IND
NIA2 IND
NIR1 IND
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and Gan, 2006) and suggested to be involved in
senescence of reproductive tissue (Kunieda et al.,
2008). This result is consistent with the role of Asn in
N-remobilization from leaves to developing seeds. The
repressors of ASN1 are TT8 and AGL87. TT8 was
isolated while screening for seed coat color and is
expected to play a role in flavonoid metabolism (Nesi
et al., 2000). AGL87 is a transcription factor from the
MADS box family that has not been implicated during
seed development. Little is known about ASN2, but
this result supports a role for this gene during seed
development. ASN1 and ASN2 are known to be recip-
rocally regulated, especially in light; thus, it is in-
teresting to see ASN1 and ASN2 also regulated
reciprocally during seed development (Table III). The
network analysis hypothesizes that the five metabolic
genes (NIR1, NIA1, NIA2, ASN1, and ASN2) are im-
portant in nitrogen metabolism during seed develop-
ment, and it also proposes putative regulators of ASN1
and ASN2, hypotheses that can be experimentally
validated.

DISCUSSION

Data interpretation, not data generation, has become
an important bottleneck hindering the advancement of
science. In an effort to help biologists take advantage
of the burgeoning supply of genomic data, we have
developed VirtualPlant, a Web site that enables scien-
tists to integrate, analyze, and visualize genomic data
to facilitate interpretation as well as generation of
testable biological hypotheses. VirtualPlant imple-
ments and combines quantitative and visual ap-
proaches to data integration and analysis using a
user-friendly, Web-accessible interface. The tools avail-
able from the VirtualPlant Web site (www.virtualplant.
org) help biologists mine genomic data to address
relevant questions in plant biology. Here, we have
provided a series of case studies that demonstrate how
a biologist can use VirtualPlant to analyze gene lists,
gene networks, and microarray experiments. For a
complete list of tools available in VirtualPlant, refer to
the “help” section in the Web site.
An important feature of VirtualPlant is the cart for

data storage and analysis. A user can store gene lists or
experiments and execute tools that access the data
stored in the cart. Most tools in VirtualPlant allow the
user to save the results from the tool in the cart for
further processing. The cart stores and organizes re-
sults indefinitely, so users can resume an analysis at
any time. The iterative nature of analysis enabled by
the cart helps filter and refine large data sets (gene
lists, networks, or microarray experiments) to develop
concrete testable biological hypotheses (Wang et al.,
2004; Gutiérrez et al., 2007b, 2008; Gifford et al., 2008;
Thum et al., 2008). Currently, the main data types the
VirtualPlant system works on are lists of genes and
microarray experiments. Our development efforts con-
template adding networks, metabolic pathways, and

other complex data types to be handled directly by the
VirtualPlant software.

When analyzing genomic data, biologists can often
fail to discover interesting genes for experimental
analysis when dealing with hundreds of putative
candidate genes. They can also spend considerable
time and effort copying and pasting lists of genes to
perform such simple tasks as finding intersections
between multiple lists. The first two case studies
illustrate how a user can manage and analyze one or
more lists of genes and easily perform set operations
or the analysis of overrepresented functional terms.
Our third case study demonstrates more advanced
uses of VirtualPlant to analyze microarray data and to
generate gene networks. In that example, we used
VirtualPlant to identify gene networks and regulatory
hubs that control seed development. A list of 1,367
genes that are regulated during seed development was
obtained from the statistical analysis of publicly avail-
able microarray data. The combined use of two differ-
ent network analysis tools led to a small set of AP2-like
transcription factors that are predicted to act as reg-
ulatory hubs of nitrogen metabolism during seed
development. The potentially key role of these tran-
scription factors in nitrogen metabolism during seed
development is supported by the phenotypes in the
seeds of some of the mutant transcription factors and
their targets. VirtualPlant allowed us to recapitulate
existing knowledge about seed development, and it
also allowed us to derive putative regulatory interac-
tions, which may now be validated experimentally.
Moreover, it allowed us to associate 147 genes of
unknown function to seed development, thus prompt-
ing the hypothesis that these genes may have impor-
tant functions during seed development.

With thewidespread use of genomic technologies, the
types of questions that are now common among biol-
ogists require a system that manages and analyzes sets
of genes rather than individual genes. In addition,many
biological processes are a result of interacting gene
modules rather than isolated genes or gene products.
The different types of data analysis (set operation,
functional analysis, and gene networks) and visualiza-
tion tools supported by VirtualPlant enable biologists to
analyze genomic data from a systems perspective.

MATERIALS AND METHODS

VirtualPlant Software and Database Architecture

VirtualPlant is written in OO Perl using a model-view-controller design

and other well-established patterns of software design. Data persistence in the

VirtualPlant system is facilitated by the open source MySQL v5.0 database

server. Our database schema uses a parsimonious design inspired by the

LIMBO system (Philippi, 2004), with only four tables (OBJECT, OBJECT_

CONNECTION, OBJECT_ATTRIBUTE, and CONNECTION_ATTRIBUTE)

that support flexible accommodation of disparate data types. With careful

attention to the indices and storage parameters of the database, we have found

that this design provides high performance for a key set of queries that

manages objects and their attributes and interconnections. Perl objects are

transparently stored and retrieved from the database by a custom object

relational mapping layer. A detailed description of the software and database
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architecture is available upon request. VirtualPlant is freely available for use

on the web and can be found at http://www.virtualplant.org. The source code

is available upon request through a license agreement.

VirtualPlant Data

Currently, the database contains most recently updated versions of (1)

Arabidopsis (Arabidopsis thaliana) annotation from TAIR (ftp.arabidopsis.org;

Rhee et al., 2003); (2) GO terms and their association to Arabidopsis genes

(http://www.geneontology.org; Ashburner et al., 2000); (3) MipsFuncat func-

tional categories and their association to Arabidopsis genes (ftp.mips.gsf.de;

Mewes et al., 2004); (4) Affymetrix probes from ATH1 chips and their

association to Arabidopsis genes downloaded from TAIR (ftp.arabidopsis.

org); (5) our Multinetwork that is queried to create the network interaction

discussed in case study 3, comprising biochemical pathways, including

enzymes, reactions, and small molecules from KEGG (ftp.genome.jp; Kanehisa

et al., 2004) and AraCyc (ftp.arabidopsis.org; Mueller et al., 2003); (6) protein

interaction data from Bind (ftp.blueprint.org; Bader et al., 2004) and AtPID

(Cui et al., 2008) databases, and experimentally determined protein interac-

tions from Calmodulin (Popescu et al., 2007) and MADS BOX (de Folter et al.,

2005) data sets; and (7) regulatory interaction data from the AGRIS database

(Arabidopsis.med.ohio-state.edu/; Davuluri et al., 2003).

The VirtualPlant database also contains publicly available microarray data

obtained from the NASC Affy Watch subscription (Craigon et al., 2004). The

AtGenExpress (Schmid et al., 2005) and other widely used Arabidopsis

microarray data sets are included in the NASC database of .1,800 hybrid-

izations, performed using the Affymetrix AG and ATH1 DNA Chips. All

hybridizations were normalized using RMA (Irizarry et al., 2003), provided by

the BioConductor project (Gentleman et al., 2004). These normalized exper-

iments are loaded into VirtualPlant to enable users to make comparisons

across treatments. The normalized gene expression patterns across the ap-

proximately 1,800 chips in NASC were then correlated using the Spearman

method (Samuels andWitmer, 2003), and the significant correlations (P# 0.01)

were recorded and stored in the VirtualPlant database.

It is important to note that this networkmodel does not currently contain all

genes in the Arabidopsis genome. At present, the Arabidopsis network model

contains 16,562 nodes, of which 13,960 are genes and 97,423 interactions

described by Gutiérrez et al. (2007b). The number differences in the current

version of VirtualPlant compared to the original 2007 publication is due to

database updates, addition of new data sets, and refinement of the protein-

protein interaction predictions. The different types of interactions present in

this network are summarized in Table I. In this version of the database, protein-

protein interactions are obtained from the Interactome project (Geisler-Lee

et al., 2007) and the BIND database (Bader et al., 2002). Genes or gene products

that cannot be associated to another gene in the genome by any known or

predicted molecular interaction are not included in the model. “Regulated

edge” predictions have been described previously (Gutiérrez et al., 2008).

Briefly, consensus cis-actingmotif sequences fromAGRIS (Davuluri et al., 2003)

were searched within the 3-kb upstream regions of all genes in the Arabidopsis

genome using the DNA pattern search tool available on the RSA tools server

(vanHelden, 2003). Upstream regions were not allowed to overlap with coding

region of the upstream gene. The motifs were also not allowed to overlap. Our

predicted regulatory network contains 21,698,658 regulatory edges, where

1,187 transcription factors contain at least one binding site in the promoter

region of 25,429 target genes. Surely not all of the predicted regulatory edges

are valid. As discussed above, there are two methods of reducing the putative

edges: (1) look for binding sites that are overrepresented compared to the

genome, and (2) only consider regulatory edges that are also correlated across a

given microarray experiment. Using the combination of both of the methods

has proven useful in previous studies (Gutiérrez et al., 2008).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Case Study 2: BioMaps results.
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